

TRAFF	WISE
CONSUL	TANTS

Project Details					
Title	Traffic Impact Assessment – Ver 3				
Project Type Planning Proposal Application – Kamira Avenue, Villawood					
Project Location Kamira Avenue, Villawood NSW 2163					
Client	Traders In Purple				
Project Reference	2021 – 7 (26)				
Relevant Council	Fairfield City Council				
	Ali Raza (CPEng, NER, MIEAust, ProfCertAM, Sr. Road Safety Auditor)				
Reviewed By	Principal Traffic and Road Safety Engineer Traffwise Consultants Pty Ltd araza@traffwise.com.au				

Document History					
Version Description Release Date Prepared By					
01	Draft	8 th September 2021	AB and AR		
02	Draft	13 th September 2021	AB and AR		
03	Final	20 th September 2021	AR		

Disclaimer: This report is believed to be true and correct at the time of writing. It is based on the information and data provided by the client, designers, architect and other relevant organisations during preparation. Traffwise Consultants Pty Ltd does not accept any contractual, tortuous or other form of liability for any consequences arising from its use. People using the information in the report should apply and rely on their own skill and judgement to a particular issue they are considering.

September 20, 2021

2

		Kamira Avenue, Villawood NSW 2163
Table	e of Contents	
1. Int	troduction	
1.1	Overview	6
1.2	Background	6
1.3	Proposal	
1.4	Reference Documents/Websites	
1.5	Report Structure	
2. Fa	irfield Mesoscopic Model	
2.1	Mesoscopic Model Coverage – Pro	ject Site
2.2	Mesoscopic Model – Land Use Ass	umptionsc
2.3	Existing Traffic Demand – Mesosco	ppic Model Based
2.3	3.1 AM peak Demand	c
2.3	3.2 PM peak Demand	
2.4	Trip Distribution Trend – Mesosco	pic Model Based12
2.5	Key Intersection Demand Flow – M	lesoscopic Model Based14
B. Pr	oposed Kamira Court Precinct Develo	pment
1. Tri	ip Generation	
4.1	Trip Generation Rates	
4.2		
4.2		
4.2		
4.2		
5. Tr	affic Assessment – SIDRA Modelling	
5.1	-	
5.2		proach28
5.3		
5.4		
5.5	-	
5.6		ent
		ue
		eet / Binna Burra Street
		d Place
		venue
		d Road and Llewellyn Avenue
-		4. A
. PU		ng Train Services

September 20, 2021

3

CONSULTANTS		W1SE Traffic Impact Assessment – Kamira Court Precinct ANTS Kamira Avenue, Villawood NSW 2163
	2.4.2	Kamira Court Precinct – Existing Bus Services
7.	Findings.	
App	pendix A	

List of Figures

Figure 1	Project Site – Location, Existing Condition and Surrounding Land-Use
Figure 2	Project Site – Existing Zoning
Figure 3	Project Site – Mesoscopic Model Coverage
Figure 4	Travel Zone Number 1215
Figure 5	2020 AM Peak – Link Volume Plot
Figure 6	2031 AM Peak – Link Volume Plot
Figure 7	2020 PM Peak – Link Volume Plot
Figure 8	2031 PM Peak – Link Volume Plot
Figure 9	2020 AM Peak – Select Link Plots – Trip Distribution
Figure 10	2031 AM Peak – Select Link Plots – Trip Distribution
Figure 11	2020 PM Peak – Select Link Plots – Trip Distribution
Figure 12	2031 PM Peak – Select Link Plots – Trip Distribution
Figure 13	Typical Trip Distribution Trend
Figure 14	2020 AM Peak – Demand Flow at Key Intersections (Cars)
Figure 15	2020 AM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks)
Figure 16	2031 AM Peak – Demand Flow at Key Intersections (Cars)16
Figure 17	2031 AM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks)
Figure 18	2020 PM Peak – Demand Flow at Key Intersections (Cars)
Figure 19	2020 PM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks)
Figure 20	2031 PM Peak – Demand Flow at Key Intersections (Cars)
Figure 21	2031 PM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks)
Figure 22	Kamira Court Precinct – Development Plan19
Figure 23	Adopted Trip Distribution – Building A Stage 323
Figure 24	Adopted Trip Distribution – Building B Stage 125
Figure 25	Adopted Trip Distribution – Building C Stage 227
Figure 26	Intersection Layout – Woodville Road and Kirrang Avenue
Figure 27	Intersection Performance Results – Woodville Road and Kirrang Avenue
Figure 28	Intersection Layout – Woodville Road/Howatt Street/Binna Burra Street
Figure 29	Intersection Performance Results – Woodville Road/Howatt Street/Binna Burra Street 33
Figure 30	Intersection Layout – Villawood Road and Villawood Place
Figure 31	Intersection Performance Results – Villawood Road and Villawood Place
Figure 32	Intersection Layout – The Horsley Drive and River Avenue
Figure 33	Intersection Performance Results – The Horsley Drive and River Avenue
Figure 34	Intersection Layout – Woodville Road/Villawood Road/Llewellyn Avenue
Figure 35	Intersection Performance Results - Woodville Road/Villawood Road/Llewellyn Avenue
	39
Figure 36	Movement Summary Results - Woodville Road/Villawood Road/Llewellyn Avenue 40
Figure 37	Kamira Court Precinct – Nearest Train Station41
Figure 38	Kamira Court Precinct – Bus Stops and Walking Distance to the Nearest Stop42

List of Tables

Table 1	Employment Forecast9
Table 2	Population Forecast
Table 3	Proposed Land-Use and Relevance with LEP Zoning
Table 4	Trip Generation Rates (Sydney Average) – High-Density Developments
Table 5	Trip Generation Rates – Supermarket
Table 6	Trip Generation Rates – Speciality Shops
Table 7	Peak Hour Trip Generation Rates – Child Care Centre
Table 8	Trip Generation Rates (Sydney Average) – Medical Centre
Table 9	Trip Generation Rates – Library
Table 10	Trip Generation – Different Land-Use (Building A Stage 3)
Table 11	Total Trip Generation – Building A Stage 3
Table 12	Trip Generation – Different Land-Use (Building B Stage 1)
Table 13	Total Trip Generation – Building B Stage 1
Table 14	Trip Generation – Different Land-Use (Building C Stage 2)
Table 15	Total Trip Generation – Building C Stage 2
Table 16	RMS Level of Service Criteria
Table 17	Traffic Demand Proportion – Woodville Road and Kirrang Avenue
Table 18	Traffic Demand Proportion – Woodville Road/Howatt Street/Binna Burra Street 32
Table 19	Traffic Demand Proportion – Villawood Road and Villawood Place
Table 20	Traffic Demand Proportion – The Horsley Drive and River Avenue
Table 21	Traffic Demand Proportion – Woodville Road/ Villawood Road/Llewellyn Avenue 38
Table 22	Bus Route Summary

September 20, 2021

Page 863

5

RAFF WISE
CONSULTANTS

1. Introduction

1.1 Overview

Traders in Purple (TIP) has commissioned Traffwise Consultants Pty Ltd (Traffwise) to undertake a modelling-based traffic impact assessment (TIA) study for the proposed modifications in Fairfield Local Environmental Plan (LEP) for Villawood, NSW.

Figure 1 shows the location and existing condition of the Kamira Court Precinct site. The figure below also provides a look at the surrounding land use.

Figure 1 Project Site – Location, Existing Condition and Surrounding Land-Use

1.2 Background

The planning consultant has provided the below background information related to proposed modifications in the LEP:

This proposal seeks consent to permit additional permitted uses by making 'retail premises' and 'business premises' permissible with consent on this site only within the R4 High Density Residential zone. The proposed additional permitted use is driven by the desire to ultimately be able to propose a supermarket and relevant complementary uses (e.g., bank or post office) on land zoned R4 High Density Residential. Considering the zone, the subject site is disadvantaged in terms of development potential as the site can only accommodate several forms of development with consent. As a result, the proposal seeks consent for the additional permitted use on site within the R4 High Density Residential zone within Lot 37 DP 202006.

Also in terms of the floor area, there is to be allowance for $4,521m^2$ of GFA as this allows for the retail floor area plus back of house and circulation space which would all be included as GFA.

The additional permitted use clause in the LEP then should permit a GFA of up to $4,521m^2$, this accounts for the total identified on the plan plus 20% buffer. This allows for the back of house and circulation areas and is within the scope identified by the Hill PDA report.

1.3 Proposal

As shown in **Figure 2**, the project site is zoned R4 (*High-Density Residential*) in the Fairfield Local Environmental Plan 2013 (LEP).

TIP is proposing modification in the LEP to develop a supermarket and retail area in Building A as part of the Kamira Court Precinct development.

Figure 2 Project Site – Existing Zoning Source: https://pp.planningportal.nsw.gov.au/publications/environmental-planning-instruments/fairfield-local-environmental-plan-2013

1.4 Reference Documents/Websites

- Google Map and Google Traffic Map
- Google Earth Pro
- Information and Development Plans provided by the Architect/Client
- RMS Guide to Traffic Generating Developments (2002)
- RMS Guide to Traffic Generating Developments Updated Traffic Surveys (TDT 2013/04a)
- Land and Housing Corporation Website
- RMS Traffic Modelling Guidelines (2013)

1.5 Report Structure

- Section 1: Introduction
- Section 2: Fairfield Mesoscopic Model
- Section 3: Proposed Kamira Court Precinct Development
- Section 4: Trip Generation
- Section 5: Traffic Assessment SIDRA Modelling
- Section 6: Public Transport Accessibility
- Section 7: Findings

7

2. Fairfield Mesoscopic Model

2.1 Mesoscopic Model Coverage – Project Site

Fairfield City Council (Council) has recently completed a mesoscopic modelling study for a broader area. **Figure 3** illustrates the study area of the mesoscopic model, which includes the project site.

Figure 3 Project Site – Mesoscopic Model Coverage Source: Stantec/Council

As per the provided information, the mesoscopic model does not include any traffic generators associated with the projects site.

Which indicate that, in Council's mesoscopic model, traffic demand has not been assigned to Kamira Court Precinct.

2.2 Mesoscopic Model – Land Use Assumptions

Figure 4 shows the travel zone number 1215 of the mesoscopic model. This zone includes the Kamira Court Precinct site and covers an area bounded by River Avenue, Woodville Road, Kamira Avenue and a small section of Kirrang Avenue.

Figure 4 Travel Zone Number 1215 Source: Stantec/Council

As per the provided information, **Table 1** and **Table 2** summarises the employment and population forecast for the next twenty years (up to 2041).

Table 1 Employment Forecast							
	TZ16_CODE	TZ16_name	EMP_2021	EMP_2026	EMP_2031	EMP_2036	EMP_2041
	1215	Villawood_Bunnings	122	141	151	157	166

Table 2 Population Forecast							
	TZ16_CODE	TZ16_name	ERP_2021	ERP_2026	ERP_2031	ERP_2036	ERP_2041
	1215	Villawood_Bunnings	267	782	1022	1161	1474

It is evident that a significant increase (280%) in population is expected from 2021 to 2031, with a moderate rise in employment.

As described in Section 2.1, the above forecast doesn't include development yield of Kamira Court Precinct.

2.3 Existing Traffic Demand – Mesoscopic Model Based

Council's traffic consultant has provided Link Volume Plots (LVP) for both 2021 and 2031 scenarios. The provided plots show one-hour traffic demand on the road network under AM and PM peak hours.

2.3.1 AM peak Demand

Figure 5 and **Figure 6** shows the AM peak LVP under 2021 and 2031 scenario respectively. It is noted that the traffic demand on key roads is expected to increase moderately in 2031, with evident high traffic flow on Woodville Road. The 2031 mesoscopic model for AM Peak period also indicates a significant increase in southbound traffic on Woodville Road.

 Figure 6
 2031 AM Peak – Link Volume Plot

 Source: Mesoscopic Model developed by Stantec/Council

2.3.2 PM peak Demand

Figure 7 and **Figure 8** shows the PM peak LVP under 2021 and 2031 scenario respectively. Like the traffic trends in the AM peak period, a moderate increase in the traffic demand on key roads is expected in the 2031 PM peak period.

Figure 8 2031 PM Peak – Link Volume Plot Source: Mesoscopic Model developed by Stantec/Council

2.4 Trip Distribution Trend – Mesoscopic Model Based

Figure 9 to **Figure 12** show AM and PM peak trip distribution to and from travel zone number 1215. The trip distribution is based on provided Select Link Plots (SLP) extracted from the Council's mesoscopic model.

The available data for both peak periods indicate similar trip distribution trends in the 2021 and 2031 scenarios.

Figure 9 2020 AM Peak – Select Link Plots – Trip Distribution Source: Mesoscopic Model developed by Stantec/Council

Figure 10 2031 AM Peak – Select Link Plots – Trip Distribution Source: Mesoscopic Model developed by Stantec/Council

Figure 11 2020 PM Peak – Select Link Plots – Trip Distribution Source: Mesoscopic Model developed by Stantec/Council

Figure 12 2031 PM Peak – Select Link Plots – Trip Distribution Source: Mesoscopic Model developed by Stantec/Council

The analysis of the Council's model-based trip distribution trends in all peak periods shows a typical trip distribution from travel zone number 1215. **Figure 13** shows the typical trip distribution trends noting the following key points:

- **Two-third** of the IN trips coming from the south, with **50%** of those trips turning left on Howatt Street and **50%** on Villawood Road
- Around 60% of OUT trips turn right on Woodville Road, travelling south

Figure 13 Typical Trip Distribution Trend

It is important to note that the Council's mesoscopic model doesn't include the following critical points related to Kamira Court Precinct:

- Howatt Street extension to the west and connection with Kamira Court and Kamira Avenue
- Access points of three buildings planned as part of the Kamira Court Precinct

The above points are expected to influence the distribution of trips generated by the developments in the Kamira Court Precinct. Therefore, Traffwise has considered these points in the adopted trip distribution for all three buildings in Kamira Court Precinct.

2.5 Key Intersection Demand Flow – Mesoscopic Model Based

Figure 14 to Figure 21 show the provided traffic flow demand at the following key intersections:

- Woodville Road/Kirrang Avenue
- Woodville Road/Howatt Street/Binna Burra Street
- Villawood Road/Villawood Place
- Woodville Road / Villawood Road / Llewellyn Avenue
- The Horsley Drive/River Avenue

The below figures reflect the model-based demand flow of cars and trucks (*heavy vehicles*) in the AM and PM peak periods, 7:15 am – 8:15 am and 3:15 pm – 4:15 pm, respectively.

Figure 14 2020 AM Peak – Demand Flow at Key Intersections (Cars) Source: Mesoscopic Model developed by Stantec/Council

Figure 15 2020 AM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks) Source: Mesoscopic Model developed by Stantec/Council

Figure 16 2031 AM Peak – Demand Flow at Key Intersections (Cars) Source: Mesoscopic Model developed by Stantec/Council

Figure 17 2031 AM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks) Source: Mesoscopic Model developed by Stantec/Council

Figure 18 2020 PM Peak – Demand Flow at Key Intersections (Cars) Source: Mesoscopic Model developed by Stantec/Council

 Figure 19
 2020 PM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks)

 Source: Mesoscopic Model developed by Stantec/Council

Figure 20 2031 PM Peak – Demand Flow at Key Intersections (Cars) Source: Mesoscopic Model developed by Stantec/Council

Figure 21 2031 PM Peak – Demand Flow at Key Intersections (Heavy Vehicles/Trucks) Source: Mesoscopic Model developed by Stantec/Council

3. Proposed Kamira Court Precinct Development

The overall Kamira Court Precinct area comprises three buildings (see **Figure 22**) and is planned to be developed in stages.

Figure 22 Source: DKO Architect

Kamira Court Precinct – Development Plan

As described in **Section 1.3**, TIP is proposing modification in the LEP to develop a supermarket and retail area in Building A as part of the Kamira Court Precinct development.

Table 3 summarises the proposed land use for all three buildings with relevance to the current FairfieldLEP zoning, which is R4 (*High-Density Residential*).

Kamira Court Precinct Development							
Building/Stage Proposed Land-Use Relevance with LEP Zoning							
	High-Density Residential Units	Yes					
Building A Stage 3	Supermarket	Part of the Proposed Modification					
Stage 5	Other Retail	Part of the Proposed Modification					
Duilding D	High-Density Residential Units	Yes					
Building B Stage 1	Library	Yes					
Stage 1	Ancillary Café	Yes					
Duilding C	High-Density Residential Units	Yes					
Building C	Child Care Centre	Yes					
Stage 2	Medical Centre	Yes					

 Table 3
 Proposed Land-Use and Relevance with LEP Zoning

Source: Information provided by TIP and Planning Consultant

T	RA	FF	wi	SE
0	CON	SUL	TAN	ITS

4. Trip Generation

4.1 Trip Generation Rates High-Density Residential Development

The traffic generation for high-density residential units is specified in the Roads and Maritime (RMS) Guide to Traffic Generating Developments Updated Traffic Surveys (TDT 2013/04a), Link.

The trip generation rates in the guide are based on per unit, per car space and per bedroom. For the purposes of trip generation, average trip rates based on per bedroom were adopted to ensure conservative assessment. **Table 4** summarises the adopted trip rates to assess the trip generation from the proposed high-density residential units.

Table 4

Trip Generation Rates (Sydney Average) – High-Density Developments

AM Peak (1 Hour) Per Bedroom	0.09
	0.07
PM Peak (1 Hour) Per Bedroom	
Daily Vehicle Trips Per Bedroom	0.72

Source: Guide to Traffic Generating Developments Updated Traffic Surveys (TDT 2013/04a, Link)

Supermarket

The RMS Guide to Traffic Generating Developments (2002) specifies Shopping Centre's trip generation rates average trip rates in the peak hours on a weekday evening and Saturday morning/afternoon.

The trip generation models for shopping centres consider the following land-uses:

- A(S): Slow Trade gross leasable floor area (Gross Leasable Floor Area in square metres) includes major department stores such as David Jones and Grace Bros., furniture, electrical and white goods stores.
- A(F): Faster Trade GLFA includes discount department stores such as K-Mart and Target, together with larger specialist stores such as Fosseys.
- **A(SM):** Supermarket GLFA includes stores such as Franklins and large fruit markets. A(SS): Specialty shops, secondary retail GLFA includes specialty shops and take-away stores such as McDonalds. These stores are grouped as they tend to not be primary attractors to the centre.
- A(OM): Office, medical GLFA: includes medical centres and general business offices.

Table 5 summarises the specified average trip rates for supermarkets.

Table 5 Trip Generation Rates – Supermarket

Thursday PM Peak (1 Hour) per 100 m ² of GLFA	15.5
Friday PM Peak (1 Hour) per 100 m ² of GLFA	13.8
Saturday Peak (1 Hour) per 100 m ² of GLFA	14.7
Daily Trips per 100 m ² of GLFA	121

Source: RMS Guide to Traffic Generating Developments (2002)

- The highest peak hour trip rate (15.5 per 100 m² of GLFA) has been adopted
- The RMS guide does not specify the trip rate for the weekday AM peak period. Therefore, it is assumed that trip generation in a typical weekday AM peak will be 25% of the PM peak period for this assessment. This will ensure conservative assessment.
- It is assumed that the daily trips from the proposed retail area would be ten (10) times the peak hour trip generation on a typical weekday.

Page 878

Specialty Shops

Source.

The RMS Guide to Traffic Generating Developments (2002) specifies Specialty Shops' average trip rates. To ensure consistency with the adopted supermarket trip rates, **Table 6** summarises the adopted average trip rates for Specialty Shops on a typical Thursday evening peak.

Table 6	Trip Generation Rates – Speciality Shops	

	Thursday PM Peak (1 Hour) per 100 m ² of GLFA	4.6
e: RMS Gui	de to Traffic Generatina Developments (2002)	

To ensure robust and conservative assessment:

- The RMS guide does not specify the trip rate for the weekday AM peak period. Therefore, it is
 assumed that trip generation in a typical weekday AM peak will be 25% of the PM peak period for
 this assessment.
- It is assumed that the daily trips from the proposed retail area would be ten (10) times the peak hour trip generation on a typical weekday.

Child Care Centre

The trip generation rates for a Child Care Centre are specified in the RMS Guide to Traffic Generating Developments (2002).

The RMS guide specifies different trip rates for Pre-School, Long-Day Care and Before/After Care childcare facilities. The proposed child care centre's exact use is not clear. Therefore, for the purposes of this assessment, the maximum trip generation rates have been adopted.

RMS guide specifies a maximum rate of 1.4 trips and 0.8 trips per child in a <u>two-hour</u> AM and <u>one-and-a-half-hour</u> PM peak period. However, to assess one-hour peak trip generation and to ensure conservative assessment, 75% of the specified trip rates have been adopted for one-hour peak period trip generation. The adopted trip rates are summarised in **Table 7**:

Table 7

Peak Hour Trip Generation Rates – Child Care Centre

Peak Period	Rates – RMS Guide	Rates Adopted
AM Peak	1.4 per child (two-hour based)	1 per child (one-hour based)
PM Peak	0.8 per child (one and a half-hour based)	0.6 per child (one-hour based)

The daily trip generation of a maximum of four (04) trips per child was assumed, considering two dropoff trips (one IN and one OUT) and two pick-up trips (one IN and one OUT) on a typical day.

Medical Centre

For medical centre, the traffic generation rates adopted for this analysis are sourced from RMS Trip Generation Surveys, Medical Centres Analysis Report *(TEF Consulting, 2015)*. The medical centre trip rates adopted for this study are described in **Table 8**.

Table 8 Trip

Trip Generation Rates (Sydney Average) – Medical Centre

AM Peak (1 Hour) per Consulting Room	2.8
PM Peak (1 Hour) per Consulting Room	3.2
Daily Trips per Consulting Room	23.2

Source: RMS Trip Generation Surveys, Medical Centres Analysis Report (Table 3.2 (page 11), TEF Consulting, 2015)

Library

The RMS Guide to Traffic Generating Developments (2002) and Updated Traffic Surveys (TDT 2013/04a) do not provide trip rates for a library. Therefore, for this assessment, trip rates for commercial use have been adopted for the library. **Table 9** summarises the adopted trip rates to assess the trip generation from the proposed small library.

 Table 9
 Trip Generation Rates – Library

 Concration nates Endrary	
PM Peak (1 Hour) per 100 m ²	2
Daily Trips per 100 m ²	10

Source: RMS Guide to Traffic Generating Developments (2002)

The RMS guide does not specify the trip rate for the weekday AM peak period. Therefore, it is assumed that trip generation in a typical weekday AM peak will be 10% of the PM peak period for this assessment.

Ancillary Café

Considering the small size $(57 m^2)$ and the locality within the Villawood Town Centre area, it is envisaged that the ancillary café would be primarily used by the residents and visitors in the area. Therefore, it is assumed that the development of an ancillary café would not generate any additional vehicular trips.

4.2 Trip Generation and Distribution

4.2.1 Building A – Stage 3

Table 10 summarises the different land-uses proposed in Building A with likely trip generation in the peak hours and in a typical weekday. The development yield is based on information provided by TIP and the architect.

Table 10 Tri	p Generat	tion – Different	t Land-Use (Buildin	ng A Stage 3)			
Trip Generation - Building A Stage 3							
	Residential Component - High Density						
Unit Type	Unit Type Quantity Number of Bedrooms Trip Generation						
1-Bed Unit		24	24				
2-Bed Unit		110	220	Weekday	Weekday	Daily Tains	
3-Bed Unit		24	72	AM Peak	PM Peak	Daily Trips	
Total Numb	er of Be	drooms	316				
			TOTAL TRIPS	28	22	227.5	
	IN				18	114	
	OUT				4	114	
			Supermarke	et			
Туре		GLFA	(m²)	Weekday	Weekday	Daily Tring	
Supermarke	t	12	16	AM Peak	PM Peak	Daily Trips	
			TOTAL TRIPS	47	188	1885	
			IN	24	94	942	
			OUT	24	94	942	
			Other Retai	il			
Туре	Type GLFA (m²) Weekday Weekday Deily Tyj						
Other Retai	1	12	73	AM Peak	PM Peak	Daily Trips	
	TOTAL TRIPS			15	59	586	
			IN	7	29	293	
			OUT	7	29	293	

Attachment F

Table 11 summarises the total trip generation from Building A. The assessment indicates that the proposed land-use mix in Building A is expected to generate a total of 90 and 269 trips in the AM and PM peak hours, respectively.

Total Trip Generation – Building A | Stage 3

Total Peak Hour Trips				
Peak Period	IN	Out	Total	
Weekday AM Peak	37	54	90	
Weekday PM Peak	141	128	269	

Trip Distribution Assumption

Based on the following, Figure 23 illustrates the adopted trip generation for Building A:

- Mesoscopic model-based trip distribution trends (Section 2.4)
- Typical trip distribution is shown in Figure 13
- Location of potential access points of Building A
- Extension of Howatt Street and Kamira Court
- Existing and planned movement patterns on surrounding streets.

Figure 23 Adopted Trip Distribution – Building A | Stage 3

4.2.2 Building B – Stage 1

Table 12 summarises the different land-uses proposed in Building B with likely trip generation in the peak hours and on a typical weekday. The development yield is based on information provided by TIP and the architect.

Table 12 Trip Generation – Different Land-Use (Building B Stage 1)							
Trip Generation - Building B Stage 1							
Residential Component - High Density							
Unit Type	Unit Type Quantity Number of Bedrooms Trip Generation						
1-Bed Unit	25	25					
2-Bed Unit	64	128	Weekday	Weekday	Daily Tring		
3-Bed Unit	23	69	AM Peak	PM Peak	Daily Trips		
Total Number of Be	drooms	222					
		TOTAL TRIPS	20	16	159.8		
		IN	4	12	80		
		OUT	16	3	80		
		Librar	y				
Туре	GFA m2	GLFA m2	Weekday	Weekday	Daily Trips		
Library	328	246	AM Peak	PM Peak	Dully Trips		
		TOTAL TRIPS	1	7	33		
		IN	1	3	16		
		OUT	0	3	16		
		Ancillary	Café				
Туре	GFA m2	GLFA m2	Weekday	Weekday	Daily Trips		
Ancillary Café	57	43	AM Peak	PM Peak	Dully Trips		
		TOTAL TRIPS	It is assumed t	hat the ancillary	café would be		
		IN		by the residents			
	OUT the area. Therefore, no additional vehicular trips are expected,						

Table 13 summarises the total trip generation from Building B. The assessment indicates that the proposed land-use mix in Building B is expected to generate only 21 and 22 trips in the AM and PM peak hours, respectively.

Table 13

Total Trip Generation – Building B | Stage 1

Total Peak Hour Trips					
Peak Period	IN	Out	Total		
Weekday AM Peak	5	16	21		
Weekday PM Peak	16	6	22		

Trip Distribution Assumption

Based on the following, Figure 24 illustrates the adopted trip generation for Building B:

- Mesoscopic model-based trip distribution trends (Section 2.4)
- Typical trip distribution is shown in Figure 13
- Proposed access point on Howatt Street extension near the intersection with Kamira Avenue
- Extension of Howatt Street and Kamira Court
- Existing and planned movement patterns on surrounding streets.

Figure 24 Adopted Trip Distribution – Building B | Stage 1

4.2.3 Building C – Stage 2

Table 14 summarises the different land-uses proposed in Building C with likely trip generation in the peak hours and in a typical weekday. The development yield is based on information provided by TIP and the architect.

As per the provided, Building C comprises the following land-uses:

- High-Density Residential Units
- Child Care Centre
- Medical Centre

Table 15 summarises the total trip generation from Building C. The assessment indicates that the proposed land-use mix in Building C is expected to generate 126 and 90 trips in the AM and PM peak hours, respectively.

Traffic Impact Assessment – Kamira Court Precinct

Kamira Avenue, Villawood NSW 2163

TRAFF WISE	
CONSULTANTS	

Table 14

Trip Generation – Different Land-Use (Building C | Stage 2)

Trip Generation - Building C Stage 2						
	Reside	ential Componei	nt - High Densit	y		
Unit Type	Quantity	Number of Bedrooms	Trip Generation		1	
1-Bed Unit	14	14				
2-Bed Unit	57	114	Weekday	Weekday	Weekday	Daily Trips
3-Bed Unit	9	27	AM Peak	PM Peak	Dully Trips	
Total Number of Be	drooms	155				
		TOTAL TRIPS	14	11	111.6	
IN			3	9	56	
		OUT	11	2	56	
		Child Care (Centre			
Туре	Number	of Students	Weekday	Weekday	Dailta Taina	
Child Care Centre		90	AM Peak	PM Peak	Daily Trips	
		TOTAL TRIPS	90	54	360	
		IN	45	27	180	
		OUT	45	27	180	
		Medical C	entre			
Туре	Consult	ring Rooms	Weekday	Weekday	Daily Tring	
Medical Centre		8	AM Peak	PM Peak	Daily Trips	
		TOTAL TRIPS	22	26	186	
		IN	11	13	93	
		OUT	11	13	93	

Table 15

Total Trip Generation – Building C | Stage 2

Total Peak Hour Trips						
Peak Period IN Out Total						
Weekday AM Peak	59	67	126			
Weekday PM Peak	48	42	90			

Trip Distribution Assumption

Based on the following, Figure 25 illustrates the adopted trip generation for Building C:

- Mesoscopic model-based trip distribution trends (Section 2.4)
- Typical trip distribution is shown in Figure 13
- Proposed access point on Howatt Street extension near the intersection with Kamira Avenue
- Extension of Howatt Street and Kamira Court
- Existing and planned movement patterns on surrounding streets.

Figure 25 Adopted Trip Distribution – Building C | Stage 2

It is important to note that trip rates described in Section 4.1 include both In and Out trips. The following typical IN and OUT trip ratios were adopted for this assessment:

For Residential Development: 20% IN and 80% OUT in AM Peak and opposite IN and OUT ratios in the PM Peak.

For All Other Developments: 50% IN and 50% OUT in both AM and PM peaks

5. Traffic Assessment – SIDRA Modelling

5.1 Council's Mesoscopic Model

As described in earlier sections, Fairfield City Council has recently completed a mesoscopic modelling study for a broader area, including Kamira Court Precinct site. However, the mesoscopic model does not assign any traffic demand to the Precinct in existing and future scenarios. *(See Section 2.1 for details)*

Section 2 describes all the model data and outputs that Council's Traffic Consultant (Stantec) has provided for this study. The provided includes modelling-based traffic demand at the following key intersection:

- Woodville Road / Kirrang Avenue
- Woodville Road/ Howatt Street/ Binna Burra Street
- Villawood Road/ Villawood Place
- Woodville Road / Villawood Road / Llewellyn Avenue
- The Horsley Drive/ River Avenue

The intersection traffic demand (Cars and Trucks) has been provided for the following scenarios:

- Modelled Years
- o Base: 2020
 - o Future Base: 2031
- <u>Peak Periods</u>
 - AM peak: 7:15am 8:15am
 - PM peak: 3:15pm 4:15pm

It is understood that the mesoscopic model was calibrated and validated as part of the broader area modelling study.

5.2 Traffic Assessment – Modelling Approach

The following points highlighted the adopted approach for traffic assessment as part of this study:

- All the key intersections were modelled using SIDRA software for 2020 (base) and 2031 (future) scenarios
- Each modelled intersection was assessed for both the AM and PM peak periods under the base and future scenarios
- In all scenarios and peak periods, each modelled intersection was assessed with and without expected traffic generation from the Kamira Court Precinct
- The mesoscopic modelling-based traffic demand was considered to model without development traffic scenarios in both base and future years
- For with development scenario modelling, expected trip generation from all buildings included in the Precinct was added on top of the mesoscopic model-based demand
- The trip generated by the Precinct was distributed on the network in line with the typical trip distribution. (See Section 4.2)

The above modelling approach will inform the performance of each study intersection with development traffic. This approach will also inform the proportion of traffic demand associated with the Precinct and additional traffic impacts (if any).

5.3 SIDRA Modelling Assumptions

- Level of Service (LoS) method was set to NSW RMS (RTA)
- SIDRA default peak Flow Factor of 95 per cent was adopted
- Intersection geometry was based on the latest available imagery
- Turn movement restrictions at Woodville Road/Howatt Street and Woodville Road/Kirrang Avenue intersections were considered
- Howatt Street will be extended up to Kamira Court and further west to connect Kamira Avenue
- Only one-way movement (east to west) would be permitted on Howatt Street from Woodville Road to Kamira Court
- Howatt Street from Kamira Avenue to Kamira Court will have a one-way traffic flow (west to east)
- Adopted trip generation for each building included in the Precinct is as per Section 4.1 and Section 4.2
- Adopted trip distribution is as per Section 2.4 and Section 4.2.

5.4 Modelling Scenarios

Table 16

All of the key intersections (listed in **Section 5.1**) were modelled for the following existing and future scenarios:

- 2020 Weekday AM Peak (with and without proposed development traffic)
- 2020 Weekday PM Peak (with and without proposed development traffic)
- 2031 Weekday AM Peak (with and without proposed development traffic)
- 2031 Weekday PM Peak (with and without proposed development traffic)

5.5 Intersection Performance Criteria

The intersection performance criteria are based on the RMS Traffic Modelling Guidelines (2013). The capacity of the controlling intersections can largely determine the capacity of a road network. The key indicator of intersection performance Level of Service (LoS) is a delay, where results are placed on a continuum from 'A' to 'F' as summarised in **Table 16**.

RMS Level of Service	Criteria
LoS	Control delay per vehicle in seconds (d) (including geometric delay)
	All intersection types
A	d < 14
В	d < 15 to 28
С	d < 29 to 42
D	d < 43 to 56
E	d ≤ 57 to 70
F	d > 70

Source: RMS Traffic Modelling Guidelines (2013)

RMS Traffic Modelling Guidelines (2013) also states that the average movement delay and level of service over all movements should be taken for traffic signals. For roundabouts and priority control signals intersection (with Stop and Give Way signs or operating under the T-junction rule), the critical movement for the level of service assessment should be that with the worst movement delay.

5.6 Intersection Performance Assessment

5.6.1 Woodville Road/Kirrang Avenue

Layout

Figure 26 illustrate the modelled layout of Woodville Road and Kirrang Avenue Intersection.

Figure 26 Intersection Layout – Woodville Road and Kirrang Avenue Source: SIDRA Model

Traffic Demand Proportion

 Table 17 summarises the total expected traffic demand at Woodville Road and Kirrang Avenue

 intersection. The table also highlights the proportion of traffic generated by the Kamira Court Precinct.

Table 17	Traffic Demand Proportion – Woodville Road and Kirrang Avenue						
	Woodville Ro	oad and Kirrang Avenue					
	2020 AM Peak With Dev						
	2020 AM Peak Without Dev		3905				
		Development Traffic Proportion	149	3.68%			
	2020 PM Peak With Dev		3902				
	2020 PM Peak Without Dev		3661				
		Development Traffic Proportion	241	6.18%			
	2031 AM Peak With Dev		4220				
	2031 AM Peak Without Dev		4072				
		Development Traffic Proportion	148	3.51%			
	2031 PM Peak With Dev		4266				
	2031 PM Peak Without Dev		4025				
		Development Traffic Proportion	241	5.65%			

September 20, 2021 **30**

Attachment F

Modelling Results

Figure 27 shows the performance of Woodville Road and Kirrang Avenue intersection in 2020 and 2031 scenarios.

Site ID	Site Name	Dem. Flow	Deg of	Del (Ctrl)	LOS	Back Que	Back Que
		(Tot)	Satn				
		veh/h		sec		veh	m
Site Cate	egory: 2020 AM Peak Without Dev						
103	Woodville Road and Kirrang Avenue	3905	0.801	14.3	LOSA	30.3	226.0
Site Cate	egory: 2020 AM Peak With Dev						
103	Woodville Road and Kirrang Avenue	4054	0.824	18.1	LOS B	38.2	285.0
Site Cate	egory: 2031 AM Peak Without Dev						
103	Woodville Road and Kirrang Avenue	4072	0.787	15.4	LOS B	28.3	209.6
Site Cate	gory: 2031 AM Peak With Dev						
103	Woodville Road and Kirrang Avenue	4220	0.800	19.1	LOS B	34.8	258.3
Site Cate	egory: 2020 PM Peak Without Dev						
103	Woodville Road and Kirrang Avenue	3661	0.688	10.3	LOSA	19.5	146.0
Site Cate	gory: 2020 PM Peak With Dev						
103	Woodville Road and Kirrang Avenue	3902	0.743	13.5	LOSA	22.2	166.0
Site Cate	egory: 2031 PM Peak Without Dev						
103	Woodville Road and Kirrang Avenue	4025	0.619	10.3	LOSA	26.2	199.5
Site Cate	gory: 2031 PM Peak With Dev						
103	Woodville Road and Kirrang Avenue	4266	0.774	12.3	LOSA	26.8	203.4

Figure 27 Intersection Performance Results – Woodville Road and Kirrang Avenue Source: SIDRA Model

Potential Impacts

The modelling results presented in **Figure 27** show that the Woodville Road and Kirrang Avenue intersection is currently operating at a satisfactory level.

It is also evident from **Figure 27** that the proposed Kamira Court Precinct development yield will not have any significant impact on the performance of the Woodville Road and Kirrang Avenue intersection. The modelling results indicate that the subject intersection is expected to operate at a satisfactory level in 2031 and beyond.

Detailed movement summaries and adopted phasing is shown in Appendix A

5.6.2 Woodville Road / Howatt Street / Binna Burra Street

Layout

Figure 28 illustrate the modelled layout of Woodville Road and Howatt Street and Binna Burra Street Intersection.

Figure 28 Intersection Layout – Woodville Road/Howatt Street/Binna Burra Street Source: SIDRA Model

Traffic Demand Proportion

Table 18 summarises the total expected traffic demand and proportion of development traffic at

 Woodville Road and Howatt Street and Binna Burra Street intersection.

Table 18	Traffic Demand Proportion – Woodville Ro	ad/Howatt Street/Binna Burra	Street
[Woodville Road and Howatt Stree	et and Binna Burra Street	
	2020 AM Peak With Dev	3857	
	2020 AM Peak Without Dev	3815	
	Developme	nt Traffic Proportion 42	1.09%
	2020 PM Peak With Dev	3851	
	2020 PM Peak Without Dev	3777	
	Developme	nt Traffic Proportion 74	1.92%
	2031 AM Peak With Dev	4080	
	2031 AM Peak Without Dev	4038	
	Developme	nt Traffic Proportion 42	1.03%
	2031 PM Peak With Dev	4276	
	2031 PM Peak Without Dev	4202	
	Developme	nt Traffic Proportion 74	1.73%

Modelling Results

Figure 29 shows the performance of Woodville Road and Howatt Street and Binna Burra Street intersection in 2020 and 2031 scenarios.

	ormance - Hourly Values						
Site ID	Site Name	Dem. Flow (Tot)	Deg of Satn	Del (Ctrl)	LOS	Back Que	Back Que
		veh/h		sec		veh	m
Site Cate	gory: 2020 AM Peak Without Dev						
102	Woodville Road and Howatt Street and Binna Burra Street	3815	0.930	19.0	LOS B	50.7	378.9
Site Cate	gory: 2020 AM Peak With Dev						
102	Woodville Road and Howatt Street and Binna Burra Street	3857	0.937	19.9	LOS B	52.6	392.9
Site Cate	gory: 2031 AM Peak Without Dev						
102	Woodville Road and Howatt Street and Binna Burra Street	4038	0.907	13.6	LOSA	36.2	268.4
Site Cate	gory: 2031 AM Peak With Dev						
102	Woodville Road and Howatt Street and Binna Burra Street	4080	0.907	13.9	LOSA	37.2	276.0
Site Cate	gory: 2020 PM Peak Without Dev						
102	Woodville Road and Howatt Street and Binna Burra Street	3777	0.740	11.9	LOSA	26.0	195.5
Site Cate	gory: 2020 PM Peak With Dev						
102	Woodville Road and Howatt Street and Binna Burra Street	3851	0.758	12.1	LOSA	27.2	204.3
Site Cate	gory: 2031 PM Peak Without Dev						
102	Woodville Road and Howatt Street and Binna Burra Street	4202	1.270	14.8	LOS B	30.7	233.9
Site Cate	gory: 2031 PM Peak With Dev						
102	Woodville Road and Howatt Street and Binna Burra Street	4276	1.270	15.0	LOS B	32.1	244.4

Figure 29 Intersection Performance Results – Woodville Road/Howatt Street/Binna Burra Street Source: SIDRA Model

Potential Impacts

The modelling results presented in **Figure 29** show that the Woodville Road and Howatt Street and Binna Burra Street intersection is currently operating at a satisfactory level. The results also highlight that the intersection is expected to keep operating at the same level of service in 2031.

It is also evident from **Figure 29** that the proposed Kamira Court Precinct development yield will not have any significant impact on the performance of the Woodville Road and Howatt Street and Binna Burra Street intersection. The modelling results indicate that the subject intersection is expected to operate at a satisfactory level, with development traffic, in 2031 and beyond.

Detailed movement summaries and adopted phasing is shown in Appendix A

5.6.3 Villawood Road and Villawood Place

<u>Layout</u>

Figure 30 illustrate the modelled layout of Villawood Road and Villawood Place Intersection.

Figure 30 Intersection Layout – Villawood Road and Villawood Place Source: SIDRA Model

Traffic Demand Proportion

Table 19 summarises the expected traffic demand and proportion of development traffic at the Villawood Road and Villawood Place intersection.

 Table 19
 Traffic Demand Proportion – Villawood Road and Villawood Place

Villawood Road and Villawood Place	Villawood Road and Villawood Place					
2020 AM Peak With Dev	268					
2020 AM Peak Without Dev	145					
Development Traffic Proportion	123	45.90%				
2020 PM Peak With Dev	754					
2020 PM Peak Without Dev	563					
Development Traffic Proportion	191	25.33%				
2031 AM Peak With Dev	302					
2031 AM Peak Without Dev	179					
Development Traffic Proportion	123	40.73%				
2031 PM Peak With Dev	901					
2031 PM Peak Without Dev	711					
Development Traffic Proportion	190	21.09%				

Modelling Results

Figure 31 shows the performance of Villawood Road and Villawood Place intersection in 2020 and 2031 scenario.

Site ID	Site Name	Dem. Flow (Tot)	Deg of Satn	Del (Wr. Mv.)	Del (Ctrl)	LOS	Back Que	Back Que
		veh/h		sec	sec		veh	m
Site Cate	gory: 2020 AM Peak Without Dev							
105	Villawood Road and Villawood Place	145	0.027	5.1	2.1	NA	0.1	0.9
Site Cate	gory: 2020 AM Peak With Dev							
105	Villawood Road and Villawood Place	268	0.049	6.0	1.3	NA	0.2	1.2
Site Cate	gory: 2031 AM Peak Without Dev							
105	Villawood Road and Villawood Place	179	0.038	5.2	2.6	NA	0.2	1.5
Site Cate	gory: 2031 AM Peak With Dev							
105	Villawood Road and Villawood Place	302	0.061	6.0	1.8	NA	0.3	2.1
Site Cate	gory: 2020 PM Peak Without Dev							
105	Villawood Road and Villawood Place	563	0.214	7.5	2.4	NA	1.2	8.9
Site Cate	gory: 2020 PM Peak With Dev							
105	Villawood Road and Villawood Place	754	0.272	10.2	2.5	NA	1.7	12.1
Site Cate	gory: 2031 PM Peak Without Dev							
105	Villawood Road and Villawood Place	711	0.285	9.0	2.9	NA	1.9	13.2
Site Cate	gory: 2031 PM Peak With Dev							
105	Villawood Road and Villawood Place	901	0.352	12.3	3.4	NA	2.9	20.7

Figure 31 Intersection Performance Results – Villawood Road and Villawood Place Source: SIDRA Model

Potential Impacts

The modelling results presented in **Figure 31** show that the Villawood Road and Villawood Place intersection is currently operating at a satisfactory level. The results also highlight that the intersection is expected to keep operating at the same level of service in 2031.

It is also evident from **Figure 31** that the proposed Kamira Court Precinct development yield will not have any significant impact on the performance of the Villawood Road and Villawood Place intersection. The modelling results indicate that the subject intersection is expected to operate at a satisfactory level, with development traffic, in 2031 and beyond.

Detailed movement summaries and adopted phasing is shown in Appendix A

5.6.4 The Horsley Drive and River Avenue

Layout

Figure 32 illustrate the modelled layout of The Horsley Drive and River Avenue Intersection.

Figure 32 Intersection Layout – The Horsley Drive and River Avenue Source: SIDRA Model

Traffic Demand Proportion

Table 20 summarises the expected traffic demand and proportion of development traffic at TheHorsley Drive and River Avenue intersection.

Table 20	Traffic Demand Proportion – The Horsley Drive and River Avenue
----------	--

The Horsley Drive and River Aven	nue	
2020 AM Peak With Dev	335	8
2020 AM Peak Without Dev	335	4
Development Traffic Pro	oportion 4	0.12%
2020 PM Peak With Dev	360	4
2020 PM Peak Without Dev	359	6
Development Traffic Pro	oportion 8	0.22%
2031 AM Peak With Dev	355	6
2031 AM Peak Without Dev	355	2
Development Traffic Pro	oportion 4	0.11%
2031 PM Peak With Dev	402	5
2031 PM Peak Without Dev	401	7
Development Traffic Pro	oportion 8	0.20%

September 20, 2021

36

Modelling Results

Figure 33 shows the performance of The Horsley Drive and River Avenue intersection in the 2020 and 2031 scenarios.

Site ID	Site Name	Dem. Flow (Tot)	Deg of Satn	Del (Ctrl)	LOS	Back Que	Back Que
		veh/h		sec		veh	m
Site Cate	gory: 2020 AM Peak Without Dev						
104	The Horsley Drive and River Avenue	3354	0.712	10.4	LOS A	6.8	49.1
Site Cate	gory: 2020 AM Peak With Dev						
104	The Horsley Drive and River Avenue	3358	0.713	10.4	LOS A	6.9	49.2
Site Cate	gory: 2031 AM Peak Without Dev						
104	The Horsley Drive and River Avenue	3552	0.894	12.7	LOS A	11.6	83.3
Site Cate	gory: 2031 AM Peak With Dev						
104	The Horsley Drive and River Avenue	3556	0.896	12.7	LOS A	11.7	83.8
Site Cate	gory: 2020 PM Peak Without Dev						
104	The Horsley Drive and River Avenue	3596	0.673	13.6	LOS A	10.7	83.0
Site Cate	gory: 2020 PM Peak With Dev						
104	The Horsley Drive and River Avenue	3604	0.676	13.7	LOS A	10.8	83.5
Site Cate	gory: 2031 PM Peak Without Dev						
104	The Horsley Drive and River Avenue	4017	0.767	14.8	LOS B	14.0	110.1
Site Cate	gory: 2031 PM Peak With Dev						
104	The Horsley Drive and River Avenue	4025	0.767	14.9	LOS B	14.1	110.9

Figure 33 Intersection Performance Results – The Horsley Drive and River Avenue Source: SIDRA Model

Potential Impacts

The modelling results presented in **Figure 33** show that The Horsley Drive and River Avenue intersection is currently operating at a satisfactory level. The results also highlight that the intersection is expected to keep operating at the same level of service in 2031.

It is also evident from **Figure 33** that the proposed Kamira Court Precinct development yield will not have any significant impact on the performance of The Horsley Drive and River Avenue intersection. The modelling results indicate that the subject intersection is expected to operate at a satisfactory level, with development traffic, in 2031 and beyond.

Detailed movement summaries and adopted phasing is shown in Appendix A

5.6.5 Woodville Road and Villawood Road and Llewellyn Avenue

Layout

Figure 34 illustrate the modelled layout of Woodville Road and Villawood Road and Llewellyn Avenue Intersection.

Figure 34 Intersection Layout – Woodville Road/Villawood Road/Llewellyn Avenue Source: SIDRA Model

Traffic Demand Proportion

Table 21 summarises the expected traffic demand and proportion of development traffic at WoodvilleRoad and Villawood Road and Llewellyn Avenue intersection.

Table 21	Traffic Demand Proportion – Wo	odville Road/ Villawood Road/Ll	ewellyn A	Avenue
	Woodville Road and Villa	awood Road and Llewellyn Av	/enue	
[2020 AM Peak With Dev		4154	
	2020 AM Peak Without Dev		4031	
	De	evelopment Traffic Proportion	123	2.96%
	2020 PM Peak With Dev		4463	
	2020 PM Peak Without Dev		4272	
	De	evelopment Traffic Proportion	191	4.28%
	2031 AM Peak With Dev		4358	
	2031 AM Peak Without Dev		4235	
	De	evelopment Traffic Proportion	123	2.82%
	2031 PM Peak With Dev		4995	
	2031 PM Peak Without Dev		4803	
	De	evelopment Traffic Proportion	192	3.84%

September 20, 2021 38

Modelling Results

Figure 35 shows the performance of Woodville Road and Villawood Road and Llewellyn Avenue intersection in 2020 and 2031 scenarios.

Site ID	Site Name	Dem. Flow (Tot)	Deg of Satn	Del (Ctrl)	LOS	Back Que	Back Que
		veh/h		sec		veh	m
Site Cate	gory: 2020 AM Peak Without Dev						
101	Woodville Road and Villawood Road and Llewellyn Avenue	4031	0.871	10.1	LOS A	22.8	170.4
Site Cate	gory: 2020 AM Peak With Dev						
101	Woodville Road and Villawood Road and Llewellyn Avenue	4154	0.831	10.1	LOS A	23.6	176.0
Site Cate	gory: 2031 AM Peak Without Dev						
101	Woodville Road and Villawood Road and Llewellyn Avenue	4235	0.870	11.3	LOS A	25.2	194.6
Site Cate	gory: 2031 AM Peak With Dev						
101	Woodville Road and Villawood Road and Llewellyn Avenue	4358	0.861	11.8	LOS A	25.9	199.7
Site Cate	gory: 2020 PM Peak Without Dev						
101	Woodville Road and Villawood Road and Llewellyn Avenue	4272	1.196	26.3	LOS B	35.2	264.3
Site Cate	gory: 2020 PM Peak With Dev						
101	Woodville Road and Villawood Road and Llewellyn Avenue	4463	1.546	42.4	LOS C	44.9	319.6
Site Cate	gory: 2031 PM Peak Without Dev						
101	Woodville Road and Villawood Road and Llewellyn Avenue	4803	1.301	115.1	LOS F	133.3	1033.3
Site Cate	gory: 2031 PM Peak With Dev						
101	Woodville Road and Villawood Road and Llewellyn Avenue	4995	1.677	137.6	LOS F	133.3	1033.3

Figure 35 Intersection Performance Results – Woodville Road/Villawood Road/Llewellyn Avenue Source: SIDRA Model

Potential Impacts

The modelling results presented in Figure 35 show that:

- The Woodville Road and Villawood Road and Llewellyn Avenue intersection is currently operating at a satisfactory level in the AM and PM peak hours under base (2020) scenario
- The development traffic would not have any impact on the intersection, and it is expected to keep
 operating at a satisfactory level in the base scenario even with the Kamira Court Precinct's traffic.
- In the 2031 future AM peak scenario, the subject intersection is expected to operate at a maximum LOS "C" even with the development traffic
- In the 2031 future PM peak (without development) scenario, the subject intersection is expected to
 operate at an unsatisfactory LOS "F" without additional traffic from the Kamira Court Precinct. The
 average delay would be 115.1 seconds, with significant queuing of vehicles on the north approach.
- It is understood, and as evident from the results, there will be a slight increase in delay and DoS in the 2031 future PM peak (with development) scenario. However, the queueing on the north approach is expected to remain the same regardless of the Precinct traffic.

It is important to note the following key points:

The proportion of traffic demand associated with the Kamira Court Precinct is only 3.84% in the 2031 PM peak scenario. This includes trips from all three buildings to be developed in the Precinct, with most of the proposed land-use is in line with the current LEP zoning. The traffic demand associated with the proposed modifications to the LEP would be lesser than 3.84%.

The trip generation rates for supermarket and retail land-use specified in the RMS Guide to Traffic Generating Developments (2002) are based on old survey data. The guide specifies a typical rate regardless of the proximity to public transport services and surrounding residential density. Therefore, the adopted trip rates for supermarket and retail land use are very conservative.

Figure 36 illustrate the movement summary results for Woodville Road and Villawood Road and Llewellyn Avenue intersection. The results are for the 2031 Future PM peak scenario without any traffic from the Kamira Court Precinct.

Mon	Tum	ovemen		DEM	AND	Deg.	Auer	Level of	OFW D	ACK OF	Prop.	Effective	Aver.	Aver
ID	Tum	VOLU		FLO		Satn		Service			Oue	Stop	Aver. No.	Speed
		Total	HVI	[Total	HVI	South	ociay	Scivice	[Veh.	Dist]	GUC	Rate	Cycles	opect
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/
South	h: Woo	dville Ro	ad											
1	L2	65	0	68	0.0	0.944	50.5	LOS D	61.1	461.4	1.00	1.03	1.14	10.
31	T1	1616	162	1701	10.0	0.944	44.8	LOS D	61.1	461.4	1.00	1.03	1.14	29.
32	R2	21	2	22	9.5	0.199	69.0	LOS E	1.3	10.0	0.96	0.71	0.96	20.3
Appr	oach	1702	164	1792	9.6	0.944	45.3	LOS D	61.1	461.4	1.00	1.03	1.14	28.
East	Llewe	llyn Aven	iue											
21	L2	81	11	85	13.6	0.902	59.4	LOS E	9.4	69.8	0.93	0.82	1.01	22.
5	T1	74	0	78	0.0	* 0.902	54.8	LOS D	9.4	69.8	0.93	0.82	1.01	20.
23	R2	165	41	174	24.8	* 0.631	50.9	LOS D	9.0	76.5	0.91	0.87	0.91	30.
Appr	oach	320	52	337	16.3	0.902	54.0	LOS D	9.4	76.5	0.92	0.84	0.96	26.
North	n: Woo	dville Roa	ad											
24	L2	104	15	109	14.4	1.137	178.9	LOS F	133.3	1033.3	1.00	1.74	2.04	14.
25	T1	1910	235	2011	12.3	* 1.137	173.3	LOS F	133.3	1033.3	1.00	1.75	2.04	12.
9	R2	229	5	241	2.2	* 1.301	306.1	LOS F	32.7	233.3	1.00	1.50	2.82	5.
Appr	oach	2243	255	2361	11.4	1.301	187.1	LOS F	133.3	1033.3	1.00	1.72	2.12	11.
West	: Villav	vood Roa	id											
10	L2	194	4	204	2.1	0.322	32.9	LOS C	9.0	63.9	0.76	0.76	0.76	30.
11	T1	1	0	1	0.0	0.003	47.7	LOS D	0.1	0.4	0.85	0.51	0.85	22
12	R2	103	0	108	0.0	0.454	47.2	LOS D	5.4	37.7	0.93	0.76	0.93	14.
Appro	oach	298	4	314	1.3	0.454	37.9	LOS C	9.0	63.9	0.82	0.76	0.82	25.
All Vehic	cles	4563	475	4803	10.4	1.301	115.1	LOS F	133.3	1033.3	0.98	1.34	1.59	15.

Figure 36 Movement Summary Results - Woodville Road/Villawood Road/Llewellyn Avenue Source: SIDRA Model

It is evident from the modelling results that all approaches, except Woodville Road (North), would be operating at an acceptable average LOS of "D" or better. Significant delays and queuing on the north approach is the main contributing factor to the expected performance of the overall intersection. It is important to note that Woodville Road is a state road carrying a high volume of traffic.

Noting that the subject intersection is expected to reach an unsatisfactory LOS without Kamira Court Precinct's traffic, the Council should plan to assess this intersection in the coming years to inform potential upgrades/measures to ensure satisfactory operation.

However, considering the low proportion of development traffic (only 3.84%), it should not be associated with the proposed modifications to the LEP. It is also evident that the subject intersection would require upgrade/measures even if there would be no traffic from the Kamira Court Precinct.

6. Public Transport Accessibility

The broader area of the Villawood Town Centre *(including the project site)* is well serviced by train and bus services providing access to Fairfield City Centre and other larger service and employment centres such as Liverpool, Parramatta CBD and the Sydney CBD.

2.4.1 Kamira Court Precinct – Existing Train Services

Figure 37 illustrates that the Villawood Station is in close proximity, i.e., within 350 metres of walking distance from the Precinct area. The average walking time to the station would be only four minutes promoting active travel and less reliance on private vehicles.

 Figure 37
 Kamira Court Precinct – Nearest Train Station

 Source: Google Maps (Accessed online on the 8th September 2021)

Villawood Station is serviced by the following three lines:

- Parramatta or Leppington to City (T2)
- City to Liverpool or Lidcombe via Bankstown (T3)
- Liverpool or Lidcombe to City via Bankstown (T3)

2.4.2 Kamira Court Precinct – Existing Bus Services

The Precinct area is well serviced by the existing bus routes with bus stops concentrated on River Avenue to the north of the Railway, Woodville Road and Villawood Place.

As evident from Figure 38 that the nearest bus stop (*Name: Villawood Place Shops*, *No:2163165*) is located at a distance of only 210 metres from the Precinct area with an average waking time of two minutes.

Table 22 summarises the key routes operating in the vicinity of the Precinct area.

Figure 38 Kamira Court Precinct – Bus Stops and Walking Distance to the Nearest Stop Source: Google Maps (Accessed online on 8th September 2021)

ute Summary
į

Road Name	Bus Routes Number	Route Description					
Villawood Place	905 and S4	905: Bankstown to Fairfield 54: Chester Hill to Fairfield					
Woodville Road	907, 905 and S4	907: Bankstown to Parramatta					
River Avenue	4T3, N50, S4	N50: Liverpool to City Town Hall (Night Service) 4T3: Liverpool to Bankstown (Train Replacement Bus Services)					

September 20, 2021 42

7. Findings

Traffwise Consultants Pty Ltd has been engaged by Traders in Purple to undertake a modelling-based traffic impact assessment (TIA) study for the proposed modifications in Fairfield Local Environmental Plan for Villawood, NSW.

Based on the provided plans/information and the assessment/discussions presented within this report:

- Fairfield City Council has recently completed a mesoscopic modelling study for a broader area which include Kamira Court Precinct site as well. However, the mesoscopic model does not assign any traffic demand to the Precinct in existing and future scenarios. *(See Section 2.1 for details)*
- The Kamira Court Precinct area is zoned R4 (High-Density Residential) in the Fairfield Local Environmental Plan 2013 (LEP). TIP is proposing modification in the LEP to develop a supermarket and retail area in Building A as part of the Kamira Court Precinct development.
- The overall precinct area comprises three Buildings (see Section 3 and Table 3) and is planned to be developed in stages. As per the available information:
 - Building A | Stage 3 will comprise residential units, supermarket and retail area
 - Building B | Stage 1 will comprise residential units, a small library and an ancillary café
 - Building C | Stage 2 will comprise residential units, child care centre and medical centre.
- The proposed development is expected to generate:
 - 238 trips in the Weekday AM peak
 - 382 trips in the Weekday PM peak
 - 3,548 trips on a typical weekday.
- The predominant trip generation would be from Building A comprising supermarket and retail area. It is expected that Building A would generate:
 - 90 trips in the Weekday AM peak
 - 269 trips in the Weekday PM peak
 - 2,698 trips on a typical weekday.
- The modelling results indicate that the Precinct development is not expected to have any substantial impact on the following key intersections in the base (2020) and future (2031) scenario:
 - Woodville Road / Kirrang Avenue
 - Woodville Road/ Howatt Street/ Binna Burra Street
 - Villawood Road/ Villawood Place
 - The Horsley Drive/ River Avenue
- The modelling results of Woodville Road/Villawood Road/Llewellyn Avenue intersection indicates that:
 - The intersection is currently operating at a satisfactory level in the AM and PM peak hours under the base (2020) scenario. The development traffic would not impact the intersection, and it is expected to keep operating at a satisfactory level in the base scenario.

- In the 2031 future AM peak scenario, the intersection is expected to operate at a maximum LOS "C" even with the development traffic
- In the 2031 future PM peak (without development) scenario, the subject intersection is expected to operate at an unsatisfactory LOS "F" without additional traffic from the Kamira Court Precinct.
- The proportion of traffic demand associated with the Kamira Court Precinct is **only 3.84%** in the 2031 PM peak scenario. This includes trips from all three buildings to be developed in the Precinct, with most of the proposed land-use is in line with the current LEP zoning. The traffic demand associated with the proposed modifications to the LEP would be lesser than 3.84%.
- It is evident from the provided data and modelling study that the Woodville Road/Villawood Road/Llewellyn Avenue intersection would require upgrade/measures even if there would be no traffic from the Kamira Court Precinct. <u>Therefore, considering the low proportion of development</u> <u>traffic (only 3.84%), it should not be associated with the proposed modifications to the LEP.</u>
- The broader area of the Villawood Town Centre, including the Kamira Court Precinct area, is well serviced by train and bus services providing access to Fairfield City Centre and other larger service and employment centres such as Liverpool, Parramatta CBD and the Sydney CBD.
- The overall precinct area is located within 500 metres walking distance to the Villawood Station and the nearest bus stop on Villawood Place.

The provided data, modelling results, and discussion presented in this report indicate that the proposed Kamira Court Precinct and proposed modifications to the LEP are not expected to substantially impact the transport network.

The proposed development will add trips to the transport network. However, the proportion of the proposed development's traffic demand at the key intersection would be small, and the impact on performance would be insignificant. The key intersections are expected to operate at a similar level as without Precinct's traffic.

Appendix A

MODELLING RESULTS

September 20, 2021

USER REPORT FOR SITE

All Movement Classes

Project: Modelling of Intersections

Template: Default Site User Report

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2020 Scenario - AM Peak | Without Kamira Ave Traffic)]

Woodville Road and Kirrang Avenue Site Category: 2020 AM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn		PUT JMES	DEM/ FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Woo	dville Ro	ad											
30	L2	19	0	20	0.0	0.353	16.3	LOS B	8.5	63.1	0.57	0.51	0.57	45.3
31	T1	1935	152	2037	7.9	* 0.801	17.0	LOS B	30.3	226.0	0.80	0.75	0.83	42.8
Appro	bach	1954	152	2057	7.8	0.801	17.0	LOS B	30.3	226.0	0.80	0.75	0.82	42.8
North	: Woo	dville Ro	ad											
25	T1	1562	176	1644	11.3	0.453	6.5	LOS A	11.4	87.5	0.47	0.43	0.47	51.7
26	R2	7	1	7	14.3	*0.453	15.8	LOS B	11.4	87.5	0.58	0.52	0.58	43.9
Appro	bach	1569	177	1652	11.3	0.453	6.6	LOS A	11.4	87.5	0.47	0.43	0.47	51.7
West	: Kirra	ng Avenu	ie											
27	L2	16	0	17	0.0	0.069	45.8	LOS D	0.7	4.6	0.90	0.69	0.90	29.1
29	R2	171	15	180	8.8	*0.801	51.4	LOS D	8.6	64.6	1.00	0.93	1.26	28.7
Appro	bach	187	15	197	8.0	0.801	50.9	LOS D	8.6	64.6	0.99	0.91	1.23	28.7
All Vehic	les	3710	344	3905	9.3	0.801	14.3	LOSA	30.3	226.0	0.67	0.62	0.70	44.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary			
Phase	Α	в	С
Phase Change Time (sec)	58	76	0
Green Time (sec)	12	8	52
Phase Time (sec)	18	14	58
Phase Split	20%	16%	64%

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C

∇ Site: 105 [Villawood Road and Villawood Place (Site Folder: 2020 Scenario - AM Peak | Without Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2020 AM Peak Without Dev Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
South	n: Villa	wood Pla	се											
1	L2	1	0	1	0.0	0.001	4.6	LOS A	0.0	0.0	0.08	0.50	0.08	45.3
2	T1	1	0	1	0.0	0.012	4.3	LOS A	0.0	0.3	0.21	0.51	0.21	40.7
3	R2	16	0	17	0.0	0.012	4.9	LOS A	0.0	0.3	0.21	0.51	0.21	38.8
Appro	bach	18	0	19	0.0	0.012	4.9	LOSA	0.0	0.3	0.20	0.51	0.20	39.5
East:	Villaw	ood Road	t											
4	L2	4	0	4	0.0	0.027	5.1	LOS A	0.1	0.9	0.13	0.19	0.13	43.9
5	T1	23	5	24	21.7	0.027	0.3	LOS A	0.1	0.9	0.13	0.19	0.13	47.3
6	R2	9	0	9	0.0	0.027	5.1	LOS A	0.1	0.9	0.13	0.19	0.13	40.
Appro	bach	36	5	38	13.9	0.027	2.0	NA	0.1	0.9	0.13	0.19	0.13	46.2
North	: Villa	wood Pla	ce											
7	L2	21	0	22	0.0	0.018	4.8	LOS A	0.1	0.4	0.14	0.50	0.14	32.5
8	T1	1	0	1	0.0	0.002	4.3	LOS A	0.0	0.0	0.22	0.45	0.22	41.2
9	R2	1	0	1	0.0	0.002	4.8	LOS A	0.0	0.0	0.22	0.45	0.22	44.3
Appro	bach	23	0	24	0.0	0.018	4.8	LOS A	0.1	0.4	0.15	0.49	0.15	34.2
West	: Villav	vood Roa	d											
10	L2	2	0	2	0.0	0.017	4.6	LOS A	0.0	0.0	0.00	0.04	0.00	48.8
11	T1	58	7	61	12.1	0.017	0.0	LOS A	0.0	0.0	0.00	0.02	0.00	49.8
12	R2	1	0	1	0.0	0.001	4.8	LOS A	0.0	0.0	0.12	0.50	0.12	44.9
Appro	bach	61	7	64	11.5	0.017	0.2	NA	0.0	0.0	0.00	0.03	0.00	49.7
All Vehic	les	138	12	145	8.7	0.027	2.1	NA	0.1	0.9	0.09	0.21	0.09	46.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2020 Scenario - AM Peak | Without Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 AM Peak Without Dev Signals - Actuated Isolated Cycle Time = 52 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehi	cle M	ovemen	t Perfo	rmance	_									
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Woo	dville Ro	ad											
1	L2	12	0	13	0.0	0.871	15.8	LOS B	22.8	170.4	0.87	0.83	0.91	16.0
31	T1	1915	153	2016	8.0	*0.871	10.2	LOS A	22.8	170.4	0.87	0.83	0.91	48.7
32	R2	48	0	51	0.0	0.277	22.2	LOS B	1.1	7.5	0.77	0.74	0.77	34.5
Appro	bach	1975	153	2079	7.7	0.871	10.5	LOS A	22.8	170.4	0.87	0.83	0.91	48.1
East:	Llewe	ellyn Aven	ue											
21	L2	20	8	21	40.0	0.119	28.4	LOS B	0.6	5.3	0.89	0.69	0.89	29.6
5	T1	2	1	2	50.0	0.119	23.4	LOS B	0.6	5.3	0.89	0.69	0.89	28.9
23	R2	57	30	60	52.6	*0.283	29.2	LOS C	1.5	15.1	0.91	0.73	0.91	36.5
Appro	bach	79	39	83	49.4	0.283	28.8	LOS C	1.5	15.1	0.91	0.72	0.91	34.9
North	: Woo	dville Roa	ad											
24	L2	129	16	136	12.4	0.755	12.7	LOS A	15.5	119.3	0.73	0.69	0.73	49.8
25	T1	1526	169	1606	11.1	0.755	7.3	LOS A	15.5	119.3	0.74	0.68	0.74	51.1
9	R2	23	4	24	17.4	0.160	27.0	LOS B	0.6	4.6	0.84	0.71	0.84	33.6
Appro	bach	1678	189	1766	11.3	0.755	8.0	LOS A	15.5	119.3	0.74	0.68	0.74	50.7
West	: Villav	vood Roa	d											
10	L2	38	6	40	15.8	0.101	15.3	LOS B	0.7	5.2	0.71	0.69	0.71	39.9
11	T1	4	0	4	0.0	0.016	22.2	LOS B	0.1	0.7	0.87	0.56	0.87	31.6
12	R2	55	2	58	3.6	0.248	28.5	LOS B	1.4	10.2	0.91	0.73	0.91	20.5
Appro	bach	97	8	102	8.2	0.248	23.1	LOS B	1.4	10.2	0.83	0.71	0.83	29.4
All Vehic	les	3829	389	4031	10.2	0.871	10.1	LOS A	22.8	170.4	0.81	0.76	0.83	48.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary			
Phase	Α	в	
Phase Change Time (sec)	13	0	
Green Time (sec)	33	7	
Phase Time (sec)	39	13	
Phase Split	75%	25%	

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase B Input Phase Sequence: A, B

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2020 Scenario - AM Peak | Without Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 AM Peak Without Dev Signals - Actuated Isolated Cycle Time = 92 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B Output Phase Sequence: A, A1, B

Veh	icle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLL [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Woo	odville Ro	ad											
1 31 Appr	L2 T1 roach	20 1934 1954	0 152 152	21 2036 2057	0.0 7.9 7.8	0.930 * 0.930 0.930	33.4 27.9 27.9	LOS C LOS B LOS B	50.2 50.7 50.7	374.6 378.9 378.9	0.97 0.97 0.97	1.00 1.00 1.00	1.09 1.09 1.09	20.3 29.9 29.8
East	: Binna	a Burra St												
21 5 23 Appr	L2 T1 R2 roach	17 17 38 72	1 4 1 6	18 18 40 76	5.9 23.5 2.6 8.3	0.106 0.106 0.106 0.106	37.2 33.4 37.2 36.3	LOS C LOS C	1.4 1.4 1.4 1.4	10.8 10.8 10.2 10.8	0.82 0.82 0.82 0.82	0.66 0.66 0.70 0.68	0.82 0.82 0.82 0.82	20.5 10.9 16.5 16.4
Nort	h: Woo	dville Roa	ad											
24 25 9	L2 T1 R2	34 1553 11	3 176 11	36 1635 12	8.8 11.3 100.0	*0.454 0.454 *0.499	12.1 6.7 64.6	LOS A LOS A LOS E	10.5 11.1 0.6	80.8 85.4 8.3	0.46 0.47 1.00	0.44 0.43 0.68	0.46 0.47 1.00	21.8 48.1 11.2
Appr All Vehi	oach cles	1598 3624	190 348	1682 3815	11.9 9.6	0.499 0.930	7.2 19.0	LOS A	11.1 50.7	85.4 378.9	0.47 0.75	0.43 0.74	0.47 0.81	46.9 35.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary											
Phase	Α	A1	В								
Phase Change Time (sec)	0	62	70								
Green Time (sec)	56	2	19								
Phase Time (sec)	62	5	25								
Phase Split	67%	5%	27%								

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B

Site: 104 [The Horsley Drive and River Avenue (Site Folder: 2020 Scenario - AM Peak | Without Kamira Ave Traffic)]

The Horsley Drive and River Avenue

Site Category: 2020 AM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehi	cle M	ovemen	t Perfor	mance										
Mov Turn ID			PUT JMES HV 1	DEM FLO [Total		Deg. Satn		Level of Service	95% BA QUE [Veh.		Prop. I Que		Aver. No. Cycles	Aver Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m		Tiato	0,000	km/h
South	: The	Horsley	Drive											
2	T1	854	105	899	12.3	0.424	6.4	LOS A	6.2	48.0	0.60	0.52	0.60	51.8
3	R2	286	8	301	2.8	*0.712	19.8	LOS B	6.8	49.1	0.83	0.89	0.99	44.1
Appro	bach	1140	113	1200	9.9	0.712	9.8	LOS A	6.8	49.1	0.65	0.61	0.69	49.0
East:	River	Avenue												
4	L2	122	20	128	16.4	0.170	8.3	LOS A	0.8	6.1	0.38	0.65	0.38	51.8
26	R2	376	35	396	9.3	*0.632	28.2	LOS B	4.9	37.1	0.97	0.85	1.06	35.5
Appro	bach	498	55	524	11.0	0.632	23.3	LOS B	4.9	37.1	0.83	0.80	0.90	39.2
North	: The I	Horsley [Drive											
27	L2	819	58	862	7.1	0.480	7.3	LOSA	0.0	0.0	0.00	0.52	0.00	52.6
8	T1	729	130	767	17.8	0.316	5.9	LOSA	4.1	33.2	0.54	0.46	0.54	52.5
Appro	bach	1548	188	1629	12.1	0.480	6.7	LOS A	4.1	33.2	0.25	0.49	0.25	52.6
All Vehic	les	3186	356	3354	11.2	0.712	10.4	LOS A	6.8	49.1	0.49	0.58	0.51	48.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary											
Phase	Α	в									
Phase Change Time (sec)	0	35									
Green Time (sec)	29	9									
Phase Time (sec)	35	15									
Phase Split	70%	30%									

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2020 Scenario - AM Peak | With Kamira Ave Traffic)]

Woodville Road and Kirrang Avenue

Site Category: 2020 AM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLL [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c	Delay	Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed
South	South: Woodville Road						sec		ven	m				km/h
30 31	L2 T1	69 1950	0 152	73 2053	0.0 7.8	0.362 * 0.821	18.5 20.2	LOS B LOS B	10.6 38.2	78.4 285.0	0.57 0.82	0.55 0.78	0.57 0.84	45.8 40.4
Appro	bach	2019	152	2125	7.5	0.821	20.2	LOS B	38.2	285.0	0.82	0.77	0.83	40.6
North	: Woo	dville Ro	ad											
25	T1	1581	176	1664	11.1	0.473	9.2	LOS A	14.9	113.9	0.51	0.46	0.51	49.0
26	R2	7	1	7	14.3	*0.473	20.3	LOS B	14.9	113.9	0.63	0.57	0.63	41.0
Appro	bach	1588	177	1672	11.1	0.473	9.2	LOSA	14.9	113.9	0.51	0.46	0.51	49.0
West	: Kirran	ng Avenu	e											
27 29	L2 R2	16 228	0 15	17 240	0.0 6.6	0.053 * 0.824	49.3 58.8	LOS D LOS E	0.8 13.7	5.3 101.5	0.86	0.69 0.93	0.86	28.1 27.4
Appro		228	15	240	6.1	* 0.824 0.824	58.2	LOSE	13.7	101.5	0.99	0.93	1.21 1.19	27.4
All Vehic	les	3851	344	4054	8.9	0.824	18.1	LOS B	38.2	285.0	0.70	0.65	0.72	41.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary										
Phase	Α	в	С							
Phase Change Time (sec)	70	95	0							
Green Time (sec)	19	9	64							
Phase Time (sec)	25	15	70							
Phase Split	23%	14%	64%							

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C

∇ Site: 105 [Villawood Road and Villawood Place (Site Folder: 2020 Scenario - AM Peak | With Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2020 AM Peak With Dev Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
South	n: Villa	wood Pla	ice											
1	L2	1	0	1	0.0	0.001	4.8	LOS A	0.0	0.0	0.14	0.49	0.14	45.1
2	T1	1	0	1	0.0	0.014	5.2	LOS A	0.1	0.4	0.31	0.53	0.31	40.2
3	R2	16	0	17	0.0	0.014	5.3	LOS A	0.1	0.4	0.31	0.53	0.31	38.3
Appro	oach	18	0	19	0.0	0.014	5.2	LOS A	0.1	0.4	0.30	0.53	0.30	39.1
East:	Villaw	ood Roa	d											
4	L2	4	0	4	0.0	0.049	5.8	LOS A	0.2	1.2	0.12	0.10	0.12	46.8
5	T1	61	5	64	8.2	0.049	0.4	LOS A	0.2	1.2	0.12	0.10	0.12	54.
6	R2	9	0	9	0.0	0.049	6.0	LOS A	0.2	1.2	0.12	0.10	0.12	44.
Appro	oach	74	5	78	6.8	0.049	1.4	NA	0.2	1.2	0.12	0.10	0.12	53.
North	: Villa	wood Pla	се											
7	L2	21	0	22	0.0	0.019	5.1	LOS A	0.1	0.5	0.23	0.51	0.23	31.9
8	T1	1	0	1	0.0	0.002	5.1	LOS A	0.0	0.1	0.34	0.46	0.34	40.4
9	R2	1	0	1	0.0	0.002	5.2	LOS A	0.0	0.1	0.34	0.46	0.34	43.9
Appro	oach	23	0	24	0.0	0.019	5.1	LOS A	0.1	0.5	0.24	0.51	0.24	33.6
West	: Villav	vood Roa	d											
10	L2	2	0	2	0.0	0.039	5.1	LOS A	0.0	0.0	0.00	0.02	0.00	51.8
11	T1	137	7	144	5.1	0.039	0.0	LOS A	0.0	0.0	0.00	0.02	0.00	55.2
12	R2	1	0	1	0.0	0.001	5.0	LOS A	0.0	0.0	0.20	0.49	0.20	44.
Appro	oach	140	7	147	5.0	0.039	0.2	NA	0.0	0.0	0.00	0.02	0.00	55.0
All Vehic	les	255	12	268	4.7	0.049	1.3	NA	0.2	1.2	0.08	0.12	0.08	52.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2020 Scenario - AM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 AM Peak With Dev Signals - Actuated Isolated Cycle Time = 63 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehi	cle M	ovemen	t Perfo	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Woo	dville Ro	ad											
1	L2	15	0	16	0.0	0.831	14.4	LOS A	23.6	176.0	0.80	0.74	0.80	16.3
31	T1	1915	153	2016	8.0	0.831	8.9	LOS A	23.6	176.0	0.80	0.74	0.80	50.0
32	R2	48	0	51	0.0	0.307	23.0	LOS B	1.2	8.6	0.73	0.74	0.73	34.1
Appro	oach	1978	153	2082	7.7	0.831	9.2	LOS A	23.6	176.0	0.80	0.74	0.80	49.2
East:	Llewe	ellyn Aven	ue											
21	L2	20	8	21	40.0	0.120	32.4	LOS C	0.7	6.6	0.88	0.69	0.88	28.5
5	T1	4	1	4	25.0	0.120	27.7	LOS B	0.7	6.6	0.88	0.69	0.88	27.9
23	R2	57	30	60	52.6	0.297	33.7	LOS C	1.8	18.0	0.91	0.74	0.91	34.9
Appro	oach	81	39	85	48.1	0.297	33.1	LOS C	1.8	18.0	0.90	0.72	0.90	33.3
North	: Woo	dville Roa	ad											
24	L2	129	16	136	12.4	0.720	12.8	LOS A	17.0	130.5	0.67	0.64	0.67	49.8
25	T1	1526	169	1606	11.1	0.720	7.3	LOS A	17.0	130.5	0.68	0.63	0.68	51.1
9	R2	56	4	59	7.1	*0.429	30.0	LOS C	1.7	12.6	0.86	0.77	0.86	32.3
Appro	oach	1711	189	1801	11.0	0.720	8.5	LOS A	17.0	130.5	0.68	0.64	0.68	50.2
West	: Villav	vood Roa	ad											
10	L2	93	6	98	6.5	*0.242	17.4	LOS B	2.1	15.2	0.73	0.75	0.73	39.3
11	T1	6	0	6	0.0	0.023	26.2	LOS B	0.2	1.2	0.86	0.57	0.86	30.8
12	R2	77	2	81	2.6	0.350	33.6	LOS C	2.4	17.1	0.92	0.75	0.92	18.6
Appro	bach	176	8	185	4.5	0.350	24.8	LOS B	2.4	17.1	0.82	0.74	0.82	30.4
All Vehic	les	3946	389	4154	9.9	0.831	10.1	LOS A	23.6	176.0	0.75	0.69	0.75	48.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary			
Phase	Α	В	
Phase Change Time (sec)	15	0	
Green Time (sec)	42	9	
Phase Time (sec)	48	15	
Phase Split	76%	24%	

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase B Input Phase Sequence: A, B

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2020 Scenario - AM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 AM Peak With Dev Signals - Actuated Isolated Cycle Time = 92 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B Output Phase Sequence: A, A1, B

Veh	icle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLL [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Woo	dville Ro	ad											
1 31 Appr	L2 T1 oach	32 1936 1968	0 152 152	34 2038 2072	0.0 7.9 7.7	0.937 *0.937 0.937	35.1 29.5 29.6	LOS C LOS C LOS C	52.1 52.6 52.6	388.2 392.9 392.9	0.98 0.98 0.98	1.02 1.02 1.02	1.12 1.12 1.12	19.7 29.1 28.9
East	: Binna	Burra St												
21 5 23 Appr	L2 T1 R2 oach	17 18 40 75	1 4 1 6	18 19 42 79	5.9 22.2 2.5 8.0	0.111 0.111 0.111 0.111	37.3 33.4 37.2 36.3		1.4 1.4 1.5 1.5	11.2 11.2 10.6 11.2	0.82 0.82 0.82 0.82	0.66 0.66 0.70 0.69	0.82 0.82 0.82 0.82	20.5 11.0 16.5 16.4
Nort	n: Woo	dville Roa	ad											
24 25 9	L2 T1 R2	36 1574 11 1621	3 176 11 190	38 1657 12 1706	8.3 11.2 100.0 11.7	* 0.460 0.460 * 0.499 0.499	12.1 6.8 64.6 7.3	LOS A LOS A LOS E LOS A	10.8 11.4 0.6 11.4	82.4 87.2 8.3 87.2	0.47 0.47 1.00 0.47	0.45 0.43 0.68 0.43	0.47 0.47 1.00 0.47	21.8 48.1 11.2 46.8
All Vehi	oach cles	3664	348	3857	9.5	0.937	19.9		52.6	392.9	0.47	0.43	0.47	34.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary										
Phase	Α	A1	В							
Phase Change Time (sec)	0	62	70							
Green Time (sec)	56	2	19							
Phase Time (sec)	62	5	25							
Phase Split	67%	5%	27%							

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B

Site: 104 [The Horsley Drive and River Avenue (Site Folder: 2020 Scenario - AM Peak | With Kamira Ave Traffic)]

The Horsley Drive and River Avenue

Site Category: 2020 AM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehi	cle Me	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total	PUT JMES HV]	DEM FLO [Total		Deg. Satn		Level of Service	95% BA QUE [Veh.		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	n: The	Horsley I	Drive											
2	T1	856	105	901	12.3	0.425	6.4	LOS A	6.2	48.1	0.60	0.52	0.60	51.8
3	R2	286	8	301	2.8	*0.713	19.9	LOS B	6.9	49.2	0.83	0.90	0.99	44.1
Appro	bach	1142	113	1202	9.9	0.713	9.8	LOS A	6.9	49.2	0.65	0.61	0.70	49.0
East:	River	Avenue												
4	L2	122	20	128	16.4	0.170	8.3	LOS A	0.8	6.1	0.38	0.65	0.38	51.8
26	R2	376	35	396	9.3	*0.632	28.2	LOS B	4.9	37.1	0.97	0.85	1.06	35.
Appro	bach	498	55	524	11.0	0.632	23.3	LOS B	4.9	37.1	0.83	0.80	0.90	39.
North	: The I	Horsley [Drive											
27	L2	819	58	862	7.1	0.480	7.3	LOS A	0.0	0.0	0.00	0.52	0.00	52.0
8	T1	731	130	769	17.8	0.317	5.9	LOS A	4.1	33.3	0.54	0.46	0.54	52.
Appro	bach	1550	188	1632	12.1	0.480	6.7	LOSA	4.1	33.3	0.25	0.49	0.25	52.
All Vehic	les	3190	356	3358	11.2	0.713	10.4	LOSA	6.9	49.2	0.49	0.58	0.51	48.

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary											
Phase	Α	в									
Phase Change Time (sec)	0	35									
Green Time (sec)	29	9									
Phase Time (sec)	35	15									
Phase Split	70%	30%									

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2031 Scenario - AM Peak | Without Kamira Ave Traffic)]

Woodville Road and Kirrang Avenue

Site Category: 2031 AM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLL [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
South	n: Woo	dville Ro					000		V GIT					
30 31 Appro	L2 T1 bach	16 1803 1819	0 125 125	17 1898 1915	0.0 6.9 6.9	0.347 *0.787 0.787	17.8 18.1 18.1	LOS B LOS B LOS B	8.4 28.3 28.3	61.8 209.6 209.6	0.60 0.82 0.82	0.53 0.76 0.75	0.60 0.83 0.83	44.4 42.0 42.0
North	: Woo	dville Roa	ad											
25 26 Appro	T1 R2 bach	1831 12 1843	207 0 207	1927 13 1940	11.3 0.0 11.2	0.570 *0.570 0.570	9.2 20.1 9.3	LOS A LOS B LOS A	15.6 15.6 15.6	119.5 119.5 119.5	0.59 0.71 0.59	0.53 0.64 0.53	0.59 0.71 0.59	49.0 41.2 48.9
West	: Kirraı	ng Avenu	е											
27 29	L2 R2	8 198	0 24	8 208	0.0	0.028	41.6 47.2		0.3 9.5	2.2 73.4	0.86	0.66	0.86	30.2 29.7
Appro All Vehic		206 3868	24 356	217 4072	11.7 9.2	0.753 0.787	47.0 15.4	LOS D	9.5 28.3	73.4 209.6	0.99 0.72	0.89 0.66	1.14 0.73	29.8 43.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary										
Phase	Α	в	С							
Phase Change Time (sec)	55	76	0							
Green Time (sec)	15	8	49							
Phase Time (sec)	21	14	55							
Phase Split	23%	16%	61%							

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C

∇ Site: 105 [Villawood Road and Villawood Place (Site Folder: 2031 Scenario - AM Peak | Without Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2031 AM Peak Without Dev Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/t
South	n: Villa	wood Pla	ce											
1	L2	1	0	1	0.0	0.001	4.6	LOS A	0.0	0.0	0.08	0.50	0.08	45.3
2	T1	1	0	1	0.0	0.019	4.4	LOS A	0.1	0.5	0.23	0.52	0.23	40.6
3	R2	24	0	25	0.0	0.019	5.0	LOS A	0.1	0.5	0.23	0.52	0.23	38.
Appro	oach	26	0	27	0.0	0.019	4.9	LOS A	0.1	0.5	0.23	0.52	0.23	39.2
East:	Villaw	ood Roa	d											
4	L2	6	0	6	0.0	0.038	5.1	LOS A	0.2	1.5	0.17	0.26	0.17	42.3
5	T1	22	7	23	31.8	0.038	0.4	LOS A	0.2	1.5	0.17	0.26	0.17	46.
6	R2	17	0	18	0.0	0.038	5.2	LOS A	0.2	1.5	0.17	0.26	0.17	37.
Appro	oach	45	7	47	15.6	0.038	2.8	NA	0.2	1.5	0.17	0.26	0.17	44.
North	: Villa	wood Pla	се											
7	L2	33	0	35	0.0	0.028	4.8	LOS A	0.1	0.7	0.15	0.50	0.15	32.4
8	T1	1	0	1	0.0	0.002	4.4	LOS A	0.0	0.1	0.23	0.45	0.23	41.
9	R2	1	0	1	0.0	0.002	4.9	LOS A	0.0	0.1	0.23	0.45	0.23	44.3
Appro	oach	35	0	37	0.0	0.028	4.8	LOS A	0.1	0.7	0.15	0.50	0.15	33.
West	: Villav	vood Roa	d											
10	L2	1	0	1	0.0	0.018	4.6	LOS A	0.0	0.0	0.00	0.02	0.00	49.
11	T1	62	6	65	9.7	0.018	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	49.9
12	R2	1	0	1	0.0	0.001	4.8	LOS A	0.0	0.0	0.13	0.50	0.13	44.9
Appro	oach	64	6	67	9.4	0.018	0.2	NA	0.0	0.0	0.00	0.02	0.00	49.
All Vehic	les	170	13	179	7.6	0.038	2.6	NA	0.2	1.5	0.11	0.26	0.11	44.

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2031 Scenario - AM Peak | Without Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 AM Peak Without Dev Signals - Actuated Isolated Cycle Time = 59 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Woo	dville Ro	ad											
1	L2	15	0	16	0.0	0.802	14.3	LOS A	20.5	151.6	0.79	0.72	0.79	16.3
31	T1	1796	125	1891	7.0	0.802	8.7	LOS A	20.5	151.6	0.79	0.72	0.79	50.1
32	R2	45	2	47	4.4	0.340	30.3	LOS C	1.3	9.5	0.87	0.75	0.87	30.7
Appro	bach	1856	127	1954	6.8	0.802	9.3	LOS A	20.5	151.6	0.79	0.72	0.79	49.1
East:	Llewe	ellyn Aven	ue											
21	L2	17	6	18	35.3	0.092	29.9	LOS C	0.5	5.0	0.87	0.68	0.87	29.3
5	T1	3	1	3	33.3	0.092	25.0	LOS B	0.5	5.0	0.87	0.68	0.87	28.4
23	R2	81	42	85	51.9	*0.383	31.8	LOS C	2.4	24.0	0.92	0.76	0.92	35.6
Appro	bach	101	49	106	48.5	0.383	31.3	LOS C	2.4	24.0	0.91	0.74	0.91	34.6
North	: Woo	dville Roa	ad											
24	L2	117	19	123	16.2	0.870	16.3	LOS B	25.2	194.6	0.85	0.82	0.89	47.6
25	T1	1805	207	1900	11.5	*0.870	10.8	LOS A	25.2	194.6	0.86	0.82	0.89	48.0
9	R2	27	6	28	22.2	0.202	26.1	LOS B	0.7	5.8	0.78	0.72	0.78	34.1
Appro	bach	1949	232	2052	11.9	0.870	11.4	LOS A	25.2	194.6	0.86	0.82	0.89	47.7
West	: Villav	vood Roa	ad											
10	L2	37	5	39	13.5	0.093	13.7	LOS A	0.6	4.9	0.62	0.68	0.62	41.3
11	T1	8	0	8	0.0	0.028	24.1	LOS B	0.2	1.5	0.86	0.57	0.86	30.6
12	R2	72	1	76	1.4	0.298	30.7	LOS C	2.1	14.6	0.90	0.75	0.90	19.6
Appro	bach	117	6	123	5.1	0.298	24.9	LOS B	2.1	14.6	0.81	0.71	0.81	27.7
All Vehic	les	4023	414	4235	10.3	0.870	11.3	LOS A	25.2	194.6	0.83	0.77	0.84	47.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary											
Phase	Α	В									
Phase Change Time (sec)	15	0									
Green Time (sec)	38	9									
Phase Time (sec)	44	15									
Phase Split	75%	25%									

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase B Input Phase Sequence: A, B

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2031 Scenario - AM Peak | Without Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 AM Peak Without Dev Signals - Actuated Isolated Cycle Time = 92 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B Output Phase Sequence: A, A1, B

Vehicle Movement Performance														
Mov ID	Turn	INP VOLL [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Woo	odville Ro	ad											
1 31 Appr	L2 T1 roach	17 1797 1814	0 123 123	18 1892 1909	0.0 6.8 6.8	0.858 *0.858 0.858	23.1 17.5 17.6	LOS B LOS B LOS B	35.8 36.2 36.2	265.4 268.4 268.4	0.88 0.88 0.88	0.83 0.83 0.83	0.89 0.89 0.89	24.3 36.8 36.6
East	: Binna	a Burra St												
21 5 23 Appr	L2 T1 R2 roach	44 22 63 129	1 6 3 10	46 23 66 136	2.3 27.3 4.8 7.8	0.195 0.195 0.186 0.195	38.1 34.2 38.0 37.4	LOS C LOS C LOS C LOS C	2.6 2.6 2.5 2.6	20.1 20.1 18.2 20.1	0.84 0.84 0.84 0.84	0.71 0.71 0.73 0.72	0.84 0.84 0.84 0.84	20.2 10.5 16.2 16.8
Nort	h: Woo	dville Roa	ad											
24 25 9 Appr	L2 T1 R2 roach	63 1810 20 1893	5 208 20 233	66 1905 21 1993	7.9 11.5 100.0 12.3	* 0.539 0.539 * 0.907 0.907	12.6 7.3 66.4 8.1	LOS A LOS A LOS E LOS A	13.6 14.5 1.2 14.5	104.3 111.4 15.5 111.4	0.51 0.51 1.00 0.51	0.50 0.47 0.73 0.48	0.51 0.51 1.10 0.52	21.5 47.3 10.9 45.4
All Vehi		3836	366	4038	9.5	0.907	13.6	LOSA	36.2	268.4	0.70	0.65	0.71	39.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary										
Phase	Α	A1	В							
Phase Change Time (sec)	0	62	70							
Green Time (sec)	56	2	19							
Phase Time (sec)	62	5	25							
Phase Split	67%	5%	27%							

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B

Site: 104 [The Horsley Drive and River Avenue (Site Folder: 2031 Scenario - AM Peak | Without Kamira Ave Traffic)]

The Horsley Drive and River Avenue

Site Category: 2031 AM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INF VOLL [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
South	South: The Horsley Drive											KIIVI		
2 3	T1 R2	756 300	95 8	796 316	12.6 2.7	0.376 * 0.894	6.1 40.5	LOS A LOS C	5.3 11.6	41.0 83.3	0.57 0.98	0.50 1.20	0.57 1.70	52.1 35.0
Appro East		1056 Avenue	103	1112	9.8	0.894	15.9	LOS B	11.6	83.3	0.69	0.70	0.89	44.2
4 26	L2 R2	148 429	27 38	156 452	18.2 8.9	0.230 * 0.719	9.3 29.6	LOS A LOS C	1.2 5.9	9.7 44.2	0.45 0.99	0.67 0.90	0.45 1.19	51.2 34.8
Appro	oach	577	65	607	11.3	0.719	24.4	LOS B	5.9	44.2	0.85	0.84	1.00	38.7
North	: The	Horsley [Drive											
27 8	L2 T1	826 915	49 150	869 963	5.9 16.4	0.480 0.393	7.4 6.2	LOS A LOS A	0.0 5.5	0.0 43.7	0.00 0.57	0.52 0.49	0.00 0.57	52.7 52.2
Appro	oach	1741	199	1833	11.4	0.480	6.8	LOS A	5.5	43.7	0.30	0.50	0.30	52.4
All Vehic	cles	3374	367	3552	10.9	0.894	12.7	LOSA	11.6	83.3	0.52	0.62	0.60	46.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary											
Phase	Α	в									
Phase Change Time (sec)	0	35									
Green Time (sec)	29	9									
Phase Time (sec)	35	15									
Phase Split	70%	30%									

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2031 Scenario - AM Peak | With Kamira Ave Traffic)]

Woodville Road and Kirrang Avenue

Site Category: 2031 AM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLL [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Woo	dville Ro		VCII/II	70	v/C	360	_	Ven		_	_	_	KIIWII
30 31 Appro	L2 T1 bach	66 1818 1884	0 125 125	69 1914 1983	0.0 6.9 6.6	0.353 * 0.800 0.800	19.9 20.6 20.6	LOS B LOS B LOS B	10.4 34.8 34.8	76.0 258.3 258.3	0.59 0.83 0.82	0.57 0.76 0.76	0.59 0.83 0.82	45.0 40.1 40.3
North	: Woo	dville Ro	ad											
25 26 Appro	T1 R2 bach	1850 12 1862	207 0 207	1947 13 1960	11.2 0.0 11.1	0.594 * 0.594 0.594	12.4 26.4 12.5	LOS A LOS B LOS A	20.1 19.7 20.1	154.3 150.6 154.3	0.62 0.77 0.62	0.56 0.69 0.57	0.62 0.77 0.62	46.0 37.7 45.9
West	Kirra	ng Avenu	e											
27 29	L2 R2	8 255	0 24	8 268	0.0 9.4	0.023 *0.797	45.4 55.0	LOS D LOS D	0.4 14.9	2.5 112.6	0.83 1.00	0.66 0.91	0.83 1.15	29.0 28.2
Appro	bach	263	24	277	9.1	0.797	54.7	LOS D	14.9	112.6	0.99	0.90	1.14	28.2
All Vehic	les	4009	356	4220	8.9	0.800	19.1	LOS B	34.8	258.3	0.74	0.68	0.75	41.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary			
Phase	Α	в	С
Phase Change Time (sec)	67	95	0
Green Time (sec)	22	9	61
Phase Time (sec)	28	15	67
Phase Split	25%	14%	61%

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C

∇ Site: 105 [Villawood Road and Villawood Place (Site Folder: 2031 Scenario - AM Peak | With Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2031 AM Peak With Dev Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/t
South	n: Villa	wood Pla	ice											
1	L2	1	0	1	0.0	0.001	4.8	LOS A	0.0	0.0	0.14	0.49	0.14	45.1
2	T1	1	0	1	0.0	0.021	5.3	LOS A	0.1	0.6	0.33	0.55	0.33	40.1
3	R2	24	0	25	0.0	0.021	5.4	LOS A	0.1	0.6	0.33	0.55	0.33	38.2
Appro	oach	26	0	27	0.0	0.021	5.3	LOS A	0.1	0.6	0.32	0.54	0.32	38.7
East:	Villaw	ood Roa	d											
4	L2	6	0	6	0.0	0.061	5.9	LOS A	0.3	2.1	0.19	0.16	0.19	45.2
5	T1	60	7	63	11.7	0.061	0.7	LOS A	0.3	2.1	0.19	0.16	0.19	52.
6	R2	17	0	18	0.0	0.061	6.0	LOS A	0.3	2.1	0.19	0.16	0.19	42.
Appro	oach	83	7	87	8.4	0.061	2.2	NA	0.3	2.1	0.19	0.16	0.19	51.4
North	: Villa	wood Pla	се											
7	L2	33	0	35	0.0	0.030	5.1	LOS A	0.1	0.7	0.24	0.52	0.24	31.8
8	T1	1	0	1	0.0	0.002	5.2	LOS A	0.0	0.1	0.35	0.47	0.35	40.4
9	R2	1	0	1	0.0	0.002	5.2	LOS A	0.0	0.1	0.35	0.47	0.35	43.8
Appro	oach	35	0	37	0.0	0.030	5.1	LOSA	0.1	0.7	0.24	0.51	0.24	33.
West	: Villav	vood Roa	ad											
10	L2	1	0	1	0.0	0.039	5.1	LOS A	0.0	0.0	0.00	0.01	0.00	51.
11	T1	141	6	148	4.3	0.039	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	55.
12	R2	1	0	1	0.0	0.001	5.1	LOS A	0.0	0.0	0.21	0.49	0.21	44.6
Appro	oach	143	6	151	4.2	0.039	0.1	NA	0.0	0.0	0.00	0.01	0.00	55.0
All Vehic	les	287	13	302	4.5	0.061	1.8	NA	0.3	2.1	0.12	0.16	0.12	51.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2031 Scenario - AM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 AM Peak With Dev Signals - Actuated Isolated Cycle Time = 63 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase B Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Woo	dville Ro	ad											
1	L2	18	0	19	0.0	0.795	14.5	LOS B	21.4	158.8	0.77	0.71	0.77	16.3
31	T1	1796	125	1891	7.0	0.795	9.0	LOS A	21.4	158.8	0.77	0.71	0.77	49.8
32	R2	45	2	47	4.4	*0.359	32.0	LOS C	1.4	10.1	0.87	0.76	0.87	30.0
Appro	oach	1859	127	1957	6.8	0.795	9.6	LOS A	21.4	158.8	0.78	0.71	0.78	48.8
East:	Llewe	ellyn Aven	ue											
21	L2	17	6	18	35.3	0.096	31.1	LOS C	0.6	5.7	0.86	0.68	0.86	29.3
5	T1	5	1	5	20.0	0.096	26.3	LOS B	0.6	5.7	0.86	0.68	0.86	28.5
23	R2	81	42	85	51.9	*0.391	33.3	LOS C	2.5	25.5	0.91	0.76	0.91	35.1
Appro	oach	103	49	108	47.6	0.391	32.6	LOS C	2.5	25.5	0.90	0.74	0.90	34.1
North	: Woo	dville Roa	ad											
24	L2	117	19	123	16.2	0.861	16.1	LOS B	25.9	199.7	0.84	0.80	0.86	47.7
25	T1	1805	207	1900	11.5	0.861	10.7	LOS A	25.9	199.7	0.85	0.80	0.87	48.1
9	R2	60	6	63	10.0	0.443	28.4	LOS B	1.8	13.5	0.84	0.77	0.84	33.0
Appro	oach	1982	232	2086	11.7	0.861	11.5	LOS A	25.9	199.7	0.84	0.80	0.87	47.5
West	: Villav	vood Roa	d											
10	L2	92	5	97	5.4	0.219	15.3	LOS B	1.9	13.6	0.68	0.74	0.68	40.8
11	T1	10	0	11	0.0	0.034	25.4	LOS B	0.3	2.0	0.85	0.58	0.85	30.7
12	R2	94	1	99	1.1	0.385	32.8	LOS C	2.9	20.4	0.91	0.76	0.91	19.0
Appro	oach	196	6	206	3.1	0.385	24.2	LOS B	2.9	20.4	0.80	0.74	0.80	30.2
All Vehic	les	4140	414	4358	10.0	0.861	11.8	LOS A	25.9	199.7	0.81	0.76	0.82	46.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary			
Phase	Α	В	
Phase Change Time (sec)	16	0	
Green Time (sec)	41	10	
Phase Time (sec)	47	16	
Phase Split	75%	25%	

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase B Input Phase Sequence: A, B

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2031 Scenario - AM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 AM Peak With Dev Signals - Actuated Isolated Cycle Time = 92 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B Output Phase Sequence: A, A1, B

Vehi	icle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLL [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Woo	dville Ro	ad											
1 31 Appr	L2 T1 oach	29 1799 1828	0 123 123	31 1894 1924	0.0 6.8 6.7	0.865 * 0.865 0.865	23.7 18.1 18.2	LOS B LOS B LOS B	36.9 37.2 37.2	272.6 276.0 276.0	0.88 0.88 0.88	0.84 0.84 0.84	0.91 0.91 0.91	24.0 36.3 36.0
East	: Binna	Burra St												
21 5 23 Appr	L2 T1 R2 oach	44 23 65 132	1 6 3 10	46 24 68 139	2.3 26.1 4.6 7.6	0.198 0.198 0.191 0.198	38.1 34.3 38.0 37.4	LOS C LOS C LOS C LOS C	2.7 2.7 2.6 2.7	20.3 20.3 18.8 20.3	0.84 0.84 0.84 0.84	0.71 0.71 0.73 0.72	0.84 0.84 0.84 0.84	20.2 10.5 16.1 16.8
North	n: Woo	dville Roa	ad											
24 25 9	L2 T1 R2	65 1831 20	5 208 20	68 1927 21	7.7 11.4 100.0	* 0.545 0.545 * 0.907	12.6 7.3 66.4	LOS A LOS A LOS E	13.9 14.8 1.2	106.2 113.4 15.5	0.51 0.51 1.00	0.50 0.48 0.73	0.51 0.51 1.10	21.5 47.2 10.9
Appr All Vehi	oach cles	1916 3876	233 366	2017 4080	12.2 9.4	0.907 0.907	8.1 13.9	LOS A	14.8 37.2	113.4 276.0	0.52	0.48	0.52 0.71	45.3 39.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

A A1 B Phase A A1 B Phase Change Time (sec) 0 62 70 Green Time (sec) 56 2 19 Phase Time (sec) 62 5 25 Phase Stilt 67% 5% 27%				
Phase	Α	A1	В	
Phase Change Time (sec)	0	62	70	
Green Time (sec)	56	2	19	
Phase Time (sec)	62	5	25	
Phase Split	67%	5%	27%	

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B

Site: 104 [The Horsley Drive and River Avenue (Site Folder: 2031 Scenario - AM Peak | With Kamira Ave Traffic)]

The Horsley Drive and River Avenue

Site Category: 2031 AM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLL [Total	JMES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUE [Veh.	Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
South	n. The	veh/h Horsley I	veh/h Drive	veh/h	%	v/c	sec	_	veh	m				km/h
2	T1	758	95	798	12.5	0.377	6.1	LOS A	5.3	41.1	0.57	0.50	0.57	52.1
3	R2	300	8	316	2.7	* 0.896	40.8	LOS C	11.7	83.8	0.98	1.20	1.71	34.9
Appro	oach	1058	103	1114	9.7	0.896	16.0	LOS B	11.7	83.8	0.69	0.70	0.90	44.2
East:	River	Avenue												
4	L2	148	27	156	18.2	0.230	9.3	LOS A	1.2	9.7	0.45	0.67	0.45	51.2
26	R2	429	38	452	8.9	*0.719	29.6	LOS C	5.9	44.2	0.99	0.90	1.19	34.8
Appro	oach	577	65	607	11.3	0.719	24.4	LOS B	5.9	44.2	0.85	0.84	1.00	38.7
North	: The	Horsley [Drive											
27 8	L2 T1	826 917	49 150	869 965	5.9 16.4	0.480 0.394	7.4 6.2	LOS A LOS A	0.0 5.5	0.0 43.8	0.00 0.57	0.52 0.49	0.00 0.57	52.7 52.2
Appro	oach	1743	199	1835	11.4	0.480	6.8	LOS A	5.5	43.8	0.30	0.50	0.30	52.4
All Vehic	les	3378	367	3556	10.9	0.896	12.7	LOS A	11.7	83.8	0.52	0.62	0.61	46.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary			
Phase	Α	в	
Phase Change Time (sec)	0	35	
Green Time (sec)	29	9	
Phase Time (sec)	35	15	
Phase Split	70%	30%	

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2020 Scenario - PM Peak | Without Kamira Ave Traffic)]

Woodville Road and Kirrang Avenue

Site Category: 2020 PM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehi	cle Me	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	ffective: Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Woo	dville Ro		VCII/II	70	10	300		YCIT					KIIWII
30 31	L2 T1	48 1544	0 130	51 1625	0.0 8.4	0.303 * 0.688	16.0 13.8	LOS B LOS A	6.3 19.5	46.6 146.0	0.58 0.75	0.54 0.68	0.58 0.75	45.1 45.0
Appro	bach	1592	130	1676	8.2	0.688	13.9	LOS A	19.5	146.0	0.74	0.68	0.74	45.0
North	: Woo	dville Roa	ad											
25	T1	1780	143	1874	8.0	0.488	5.4	LOS A	10.7	80.2	0.48	0.43	0.48	53.0
Appro	bach	1780	143	1874	8.0	0.488	5.4	LOSA	10.7	80.2	0.48	0.43	0.48	53.0
West	Kirrar	ng Avenu	е											
27	L2	17	0	18	0.0	0.071	39.9	LOS C	0.6	4.4	0.90	0.69	0.90	30.5
29	R2	89	0	94	0.0	*0.373	39.9	LOS C	3.5	24.3	0.95	0.77	0.95	32.0
Appro	bach	106	0	112	0.0	0.373	39.9	LOS C	3.5	24.3	0.94	0.75	0.94	31.8
All Vehic	les	3478	273	3661	7.8	0.688	10.3	LOS A	19.5	146.0	0.61	0.55	0.61	47.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary										
Phase	Α	в	С							
Phase Change Time (sec)	50	67	0							
Green Time (sec)	11	7	44							
Phase Time (sec)	17	13	50							
Phase Split	21%	16%	63%							

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C

∇ Site: 105 [Villawood Road and Villawood Place (Site Folder: 2020 Scenario - PM Peak | Without Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2020 PM Peak Without Dev Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
South	n: Villa	wood Pla	се											
1	L2	1	0	1	0.0	0.001	5.3	LOS A	0.0	0.0	0.28	0.49	0.28	44.6
2	T1	1	0	1	0.0	0.034	7.4	LOS A	0.1	0.9	0.46	0.63	0.46	39.3
3	R2	32	0	34	0.0	0.034	6.3	LOS A	0.1	0.9	0.46	0.63	0.46	37.4
Appro	oach	34	0	36	0.0	0.034	6.3	LOS A	0.1	0.9	0.45	0.62	0.45	37.9
East:	Villaw	ood Roa	d											
4	L2	31	0	33	0.0	0.214	6.4	LOS A	1.2	8.9	0.26	0.17	0.26	43.3
5	T1	194	5	204	2.6	0.214	1.0	LOS A	1.2	8.9	0.26	0.17	0.26	46.
6	R2	62	0	65	0.0	0.214	6.7	LOS A	1.2	8.9	0.26	0.17	0.26	39.
Appro	oach	287	5	302	1.7	0.214	2.8	NA	1.2	8.9	0.26	0.17	0.26	45.
North	: Villa	wood Pla	се											
7	L2	47	0	49	0.0	0.043	5.2	LOS A	0.2	1.1	0.26	0.53	0.26	31.
8	T1	1	0	1	0.0	0.003	7.5	LOS A	0.0	0.1	0.50	0.53	0.50	38.9
9	R2	1	0	1	0.0	0.003	6.0	LOS A	0.0	0.1	0.50	0.53	0.50	42.9
Appro	oach	49	0	52	0.0	0.043	5.3	LOSA	0.2	1.1	0.27	0.53	0.27	32.
West	: Villav	vood Roa	d											
10	L2	2	0	2	0.0	0.045	4.6	LOS A	0.0	0.0	0.00	0.01	0.00	49.0
11	T1	162	5	171	3.1	0.045	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	49.9
12	R2	1	0	1	0.0	0.001	6.5	LOS A	0.0	0.0	0.40	0.51	0.40	43.8
Appro	oach	165	5	174	3.0	0.045	0.1	NA	0.0	0.0	0.00	0.01	0.00	49.9
All Vehic	les	535	10	563	1.9	0.214	2.4	NA	1.2	8.9	0.19	0.18	0.19	46.

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2020 Scenario - PM Peak | Without Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 PM Peak Without Dev Signals - Actuated Isolated Cycle Time = 85 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Woo	dville Ro	ad											
1	L2	55	0	58	0.0	0.756	20.1	LOS B	25.1	187.5	0.79	0.73	0.79	14.8
31	T1	1490	128	1568	8.6	0.756	14.5	LOS B	25.1	187.5	0.79	0.73	0.79	45.0
32	R2	14	1	15	7.1	0.148	43.2	LOS D	0.6	4.3	0.88	0.71	0.88	26.1
Appr	oach	1559	129	1641	8.3	0.756	15.0	LOS B	25.1	187.5	0.79	0.73	0.79	43.6
East	Llewe	ellyn Aven	ue											
21	L2	86	12	91	14.0	0.515	33.1	LOS C	6.0	44.5	0.83	0.72	0.83	29.5
5	T1	80	1	84	1.3	0.515	28.4	LOS B	6.0	44.5	0.83	0.72	0.83	27.7
23	R2	139	35	146	25.2	*0.559	34.5	LOS C	5.2	44.3	0.85	0.78	0.85	35.1
Appr	oach	305	48	321	15.7	0.559	32.5	LOS C	6.0	44.5	0.84	0.75	0.84	32.1
North	n: Woo	dville Roa	ad											
24	L2	80	15	84	18.8	0.874	23.9	LOS B	35.2	264.3	0.90	0.86	0.93	43.3
25	T1	1719	129	1809	7.5	0.874	18.4	LOS B	35.2	264.3	0.90	0.86	0.94	42.3
9	R2	151	4	159	2.6	* 1.196	226.7	LOS F	19.0	136.1	1.00	1.61	3.00	8.3
Appr	oach	1950	148	2053	7.6	1.196	34.7	LOS C	35.2	264.3	0.91	0.92	1.10	33.4
West	: Villav	vood Roa	d											
10	L2	165	4	174	2.4	0.275	17.4	LOS B	4.8	34.3	0.70	0.76	0.70	39.0
11	T1	3	1	3	33.3	0.007	24.8	LOS B	0.1	0.9	0.73	0.48	0.73	30.3
12	R2	76	0	80	0.0	0.289	37.9	LOS C	2.9	20.5	0.87	0.75	0.87	17.2
Appr	oach	244	5	257	2.0	0.289	23.9	LOS B	4.8	34.3	0.76	0.75	0.76	32.2
All Vehic	cles	4058	330	4272	8.1	1.196	26.3	LOS B	35.2	264.3	0.85	0.82	0.94	36.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary			
Phase	Α	в	
Phase Change Time (sec)	0	56	
Green Time (sec)	50	23	
Phase Time (sec)	56	29	
Phase Split	66%	34%	

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2020 Scenario - PM Peak | Without Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 PM Peak Without Dev Signals - Actuated Isolated Cycle Time = 92 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B Output Phase Sequence: A, A1, B

	Turn	INF		DEM		Deg.		Level of		ACK OF		Effective	Aver.	Aver.
ID		VOLL [Total veh/h	JMES HV] veh/h	FLO [Total veh/h	ws HV] %	Satn v/c	Delay	Service	QUI [Veh. veh	EUE Dist] m	Que	Stop Rate	No. Cycles	Speed km/h
Sout	h: Woo	dville Ro	ad											
1	L2	60	0	63	0.0	0.740	19.8	LOS B	25.8	192.5	0.76	0.71	0.76	25.7
31	T1	1488	128	1566	8.6	*0.740	14.3	LOS A	26.0	195.5	0.76	0.70	0.76	39.4
Appr	oach	1548	128	1629	8.3	0.740	14.5	LOS B	26.0	195.5	0.76	0.70	0.76	38.8
East:	Binna	Burra St	:											
21	L2	23	0	24	0.0	0.220	38.2	LOS C	3.1	22.8	0.85	0.69	0.85	20.8
5	T1	52	4	55	7.7	0.220	34.4	LOS C	3.1	22.8	0.85	0.69	0.85	11.0
23	R2	80	0	84	0.0	0.220	38.2	LOS C	3.1	22.8	0.85	0.74	0.85	16.2
Appr	oach	155	4	163	2.6	0.220	36.9	LOS C	3.1	22.8	0.85	0.71	0.85	15.5
North	n: Woo	dville Roa	ad											
24	L2	134	2	141	1.5	*0.523	11.4	LOS A	12.4	92.0	0.49	0.51	0.49	21.7
25	T1	1739	139	1831	8.0	0.523	6.9	LOS A	14.1	105.3	0.50	0.47	0.50	47.5
9	R2	12	12	13	100.0	*0.544	64.8	LOS E	0.7	9.0	1.00	0.68	1.00	11.1
Appr	oach	1885	153	1984	8.1	0.544	7.6	LOS A	14.1	105.3	0.50	0.47	0.50	44.9
All Vehic	cles	3588	285	3777	7.9	0.740	11.9	LOSA	26.0	195.5	0.63	0.58	0.63	40.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary	<u>.</u>		
Phase	Α	A1	В
Phase Change Time (sec)	0	62	70
Green Time (sec)	56	2	19
Phase Time (sec)	62	5	25
Phase Split	67%	5%	27%

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B

Site: 104 [The Horsley Drive and River Avenue (Site Folder: 2020 Scenario - PM Peak | Without Kamira Ave Traffic)]

The Horsley Drive and River Avenue

Site Category: 2020 PM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn		PUT JMES HV] veh/h	DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
Sout	n: The	Horsley I												
2 3 Appre	T1 R2 bach	983 175 1158	120 4 124	1035 184 1219	12.2 2.3 10.7	0.673 * 0.588 0.673	13.4 23.3 14.9	LOS A LOS B LOS B	10.7 4.2 10.7	83.0 29.9 83.0	0.86 0.90 0.87	0.77 0.83 0.78	0.89 0.95 0.90	45.1 42.3 44.5
East:	River	Avenue												
4 26 Appre	L2 R2	214 737 951	20 38 58	225 776 1001	9.3 5.2 6.1	0.237 *0.638 0.638	9.0 21.4 18.6	LOS A LOS B LOS B	1.8 8.4 8.4	13.3 61.4 61.4	0.46 0.90 0.80	0.68 0.83 0.80	0.46 0.92 0.81	51.5 39.3 42.1
		Horsley [1001	0.1	0.000	10.0	2000	0.1	01.1	0.00	0.00	0.01	
27 8	L2 T1	582 725	29 65	613 763	5.0 9.0	0.336 0.412	6.2 11.1	LOS A LOS A	0.0 5.6	0.0 42.5	0.00 0.73	0.53 0.62	0.00 0.73	52.8 47.2
Appro	oach	1307	94	1376	7.2	0.412	8.9	LOSA	5.6	42.5	0.41	0.58	0.41	49.7
All Vehic	les	3416	276	3596	8.1	0.673	13.6	LOS A	10.7	83.0	0.67	0.71	0.69	45.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary			
Phase	А	В	
Phase Change Time (sec)	0	27	
Green Time (sec)	21	17	
Phase Time (sec)	27	23	
Phase Split	54%	46%	

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2020 Scenario - PM Peak | With Kamira Ave Traffic)]

Woodville Road and Kirrang Avenue

Site Category: 2020 PM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLL [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	: Woo	dville Ro	ad											
30 31	L2 T1	140 1583	0 130	147 1666	0.0 8.2	0.328 * 0.743	16.1 14.5	LOS B LOS B	6.9 22.2	50.3 166.0	0.59	0.62	0.59	46.2 44.2
Appro		1723 dville Roa	130 ad	1814	7.5	0.743	14.7	LOS B	22.2	166.0	0.78	0.72	0.78	44.4
25 Appro	T1 bach	1804 1804	143 143	1899 1899	7.9 7.9	* 0.573 0.573	9.4 9.4	LOS A LOS A	14.5 14.5	108.0 108.0	0.63 0.63	0.57 0.57	0.63 0.63	48.8 48.8
West	Kirra	ng Avenu	е											
27 29	L2 R2	17 163	0 0	18 172	0.0 0.0	0.071 * 0.684	40.0 43.3	LOS C LOS D	0.6 6.9	4.4 48.0	0.90 1.00	0.69 0.85	0.90 1.10	30.5 31.9
Appro All	bach	180	0	189	0.0	0.684	42.9	LOS D	6.9	48.0	0.99	0.84	1.08	31.8
Vehic	les	3707	273	3902	7.4	0.743	13.5	LOSA	22.2	166.0	0.72	0.65	0.72	45.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary	Phase Timing Summary									
Phase	Α	в	С							
Phase Change Time (sec)	50	67	0							
Green Time (sec)	11	7	44							
Phase Time (sec)	17	13	50							
Phase Split	21%	16%	63%							

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C

∇ Site: 105 [Villawood Road and Villawood Place (Site Folder: 2020 Scenario - PM Peak | With Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2020 PM Peak With Dev Give-Way (Two-Way)

		ovemen												
Mov ID	Turn	INF VOLU [Total		DEM/ FLO Total		Deg. Satn		Level of Service	QU	ACK OF EUE	Prop. Que	Effective Stop Rate	Aver. No.	Aver Speed
		veh/h	veh/h	veh/h	пv ј %	v/c	sec		[Veh. veh	Dist] m		Nale	Cycles	km/l
South	n: Villa	wood Pla	ice											
1	L2	1	0	1	0.0	0.001	5.7	LOS A	0.0	0.0	0.34	0.50	0.34	44.
2	T1	1	0	1	0.0	0.042	10.1	LOSA	0.2	1.1	0.54	0.70	0.54	38.
3	R2	32	0	34	0.0	0.042	7.3	LOS A	0.2	1.1	0.54	0.70	0.54	36.
Appro	bach	34	0	36	0.0	0.042	7.3	LOS A	0.2	1.1	0.53	0.69	0.53	36.
East:	Villaw	ood Roa	d											
4	L2	31	0	33	0.0	0.272	8.1	LOS A	1.7	12.1	0.30	0.14	0.30	42.
5	T1	273	5	287	1.8	0.272	1.7	LOS A	1.7	12.1	0.30	0.14	0.30	48.
6	R2	62	0	65	0.0	0.272	8.5	LOS A	1.7	12.1	0.30	0.14	0.30	38.
Appro	bach	366	5	385	1.4	0.272	3.4	NA	1.7	12.1	0.30	0.14	0.30	47.
North	: Villa	wood Pla	се											
7	L2	47	0	49	0.0	0.048	5.7	LOS A	0.2	1.2	0.34	0.57	0.34	31.
8	T1	1	0	1	0.0	0.004	10.2	LOS A	0.0	0.1	0.58	0.59	0.58	36.
9	R2	1	0	1	0.0	0.004	6.8	LOS A	0.0	0.1	0.58	0.59	0.58	41.
Appro	bach	49	0	52	0.0	0.048	5.8	LOS A	0.2	1.2	0.35	0.57	0.35	31.
West	: Villav	vood Roa	ad											
10	L2	2	0	2	0.0	0.073	4.9	LOS A	0.0	0.0	0.00	0.01	0.00	51.
11	T1	264	5	278	1.9	0.073	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	53.
12	R2	1	0	1	0.0	0.002	7.4	LOS A	0.0	0.0	0.47	0.54	0.47	43.
Appro	bach	267	5	281	1.9	0.073	0.1	NA	0.0	0.0	0.00	0.01	0.00	53.
All Vehic	les	716	10	754	1.4	0.272	2.5	NA	1.7	12.1	0.21	0.15	0.21	48.

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2020 Scenario - PM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 PM Peak With Dev Signals - Actuated Isolated Cycle Time = 85 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehicle Movement Perfo			t Perfo	mance										
Mov ID	Turn	INP VOLL [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Woo	dville Ro	ad											
1	L2	64	0	67	0.0	0.704	17.0	LOS B	22.4	167.3	0.70	0.66	0.70	15.5
31	T1	1490	128	1568	8.6	0.704	11.4	LOS A	22.4	167.3	0.70	0.65	0.70	47.5
32	R2	14	1	15	7.1	0.139	34.9	LOS C	0.5	3.8	0.78	0.71	0.78	28.9
Appro	oach	1568	129	1651	8.2	0.704	11.9	LOSA	22.4	167.3	0.70	0.65	0.70	45.8
East:	Llewe	ellyn Aven	ue											
21	L2	86	12	91	14.0	0.671	37.3	LOS C	6.6	48.9	0.89	0.75	0.89	28.1
5	T1	84	1	88	1.2	0.671	32.6	LOS C	6.6	48.9	0.89	0.75	0.89	26.2
23	R2	139	35	146	25.2	*0.807	41.2	LOS C	5.8	49.6	0.94	0.80	0.94	32.9
Appro	oach	309	48	325	15.5	0.807	37.8	LOS C	6.6	49.6	0.91	0.77	0.91	30.3
North	: Woo	dville Roa	ad											
24	L2	80	15	84	18.8	0.809	18.2	LOS B	29.1	218.8	0.79	0.74	0.79	46.5
25	T1	1719	129	1809	7.5	0.809	12.7	LOS A	29.2	217.3	0.80	0.74	0.80	46.5
9	R2	217	4	228	1.8	* 1.546	534.8	LOS F	44.9	319.6	1.00	2.43	4.93	3.9
Appro	oach	2016	148	2122	7.3	1.546	69.1	LOS E	44.9	319.6	0.82	0.92	1.24	23.1
West	: Villav	vood Roa	ad											
10	L2	236	4	248	1.7	0.443	21.7	LOS B	8.1	57.7	0.85	0.87	0.85	36.6
11	T1	7	1	7	14.3	0.018	28.5	LOS C	0.2	1.9	0.78	0.53	0.78	30.4
12	R2	104	0	109	0.0	0.515	44.6	LOS D	4.4	31.1	0.95	0.78	0.95	15.5
Appro	oach	347	5	365	1.4	0.515	28.7	LOS C	8.1	57.7	0.88	0.84	0.88	30.1
All Vehic	les	4240	330	4463	7.8	1.546	42.4	LOS C	44.9	319.6	0.79	0.81	0.99	29.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary			
Phase	Α	в	
Phase Change Time (sec)	0	60	
Green Time (sec)	54	19	
Phase Time (sec)	60	25	
Phase Split	71%	29%	

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2020 Scenario - PM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2020 PM Peak With Dev Signals - Actuated Isolated Cycle Time = 92 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B Output Phase Sequence: A, A1, B

Vehi	icle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	South: Woodville Road													
1 31 Appr	L2 T1 oach	92 1494 1586	0 128 128	97 1573 1669	0.0 8.6 8.1	0.758 * 0.758 0.758	20.1 14.6 14.9	LOS B LOS B LOS B	26.9 27.2 27.2	200.7 204.3 204.3	0.77 0.77 0.77	0.73 0.72 0.72	0.77 0.77 0.77	25.4 39.1 38.2
East	: Binna	Burra St												
21 5 23	L2 T1 R2	23 52 83	0 4 0	24 55 87	0.0 7.7 0.0	0.224 0.224 0.224	38.3 34.4 38.3	LOS C LOS C LOS C	3.2 3.2 3.2	23.2 23.2 23.2	0.85 0.85 0.85	0.69 0.69 0.74	0.85 0.85 0.85	20.8 10.9 16.3
	oach	158	4	166	2.5	0.224	37.0	LOS C	3.2	23.2	0.85	0.72	0.85	15.5
North	n: Woo	dville Roa	ad											
24 25 9	L2 T1 R2	138 1764 12	2 139 12	145 1857 13	1.4 7.9 100.0	* 0.530 0.530 * 0.544	11.5 7.0 64.8	LOS A LOS A LOS E	12.7 14.4 0.7	94.1 107.7 9.0	0.49 0.50 1.00	0.51 0.48 0.68	0.49 0.50 1.00	21.7 47.4 11.1
Appr	oach	1914	153	2015	8.0	0.544	7.7	LOSA	14.4	107.7	0.51	0.48	0.51	44.8
All Vehi	cles	3658	285	3851	7.8	0.758	12.1	LOS A	27.2	204.3	0.64	0.59	0.64	40.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary										
Phase	Α	A1	В							
Phase Change Time (sec)	0	62	70							
Green Time (sec)	56	2	19							
Phase Time (sec)	62	5	25							
Phase Split	67%	5%	27%							

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B

Site: 104 [The Horsley Drive and River Avenue (Site Folder: 2020 Scenario - PM Peak | With Kamira Ave Traffic)]

The Horsley Drive and River Avenue

Site Category: 2020 PM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn		PUT JMES HV 1	DEM FLO [Total		Deg. Satn		Level of Service	95% BA QUE [Veh.		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%		sec		veh	m		Tidic	Cycles -	km/h
South	: The	Horsley	Drive											
2	T1	987	120	1039	12.2	0.676	13.5	LOS A	10.8	83.5	0.87	0.78	0.89	45.1
3	R2	175	4	184	2.3	*0.590	23.4	LOS B	4.2	30.0	0.90	0.83	0.95	42.2
Appro	bach	1162	124	1223	10.7	0.676	14.9	LOS B	10.8	83.5	0.87	0.78	0.90	44.5
East:	River	Avenue												
4	L2	214	20	225	9.3	0.237	9.0	LOS A	1.8	13.3	0.46	0.68	0.46	51.5
26	R2	737	38	776	5.2	*0.638	21.4	LOS B	8.4	61.4	0.90	0.83	0.92	39.3
Appro	bach	951	58	1001	6.1	0.638	18.6	LOS B	8.4	61.4	0.80	0.80	0.81	42.1
North	: The I	Horsley [Drive											
27	L2	582	29	613	5.0	0.336	6.2	LOSA	0.0	0.0	0.00	0.53	0.00	52.8
8	T1	729	65	767	8.9	0.414	11.1	LOSA	5.7	42.8	0.73	0.62	0.73	47.2
Appro	bach	1311	94	1380	7.2	0.414	8.9	LOS A	5.7	42.8	0.41	0.58	0.41	49.6
All Vehic	les	3424	276	3604	8.1	0.676	13.7	LOS A	10.8	83.5	0.67	0.71	0.69	45.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary			
Phase	Α	В	
Phase Change Time (sec)	0	27	
Green Time (sec)	21	17	
Phase Time (sec)	27	23	
Phase Split	54%	46%	

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2031 Scenario - PM Peak | Without Kamira Ave Traffic)]

Woodville Road and Kirrang Avenue

Site Category: 2031 PM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 130 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Woo	dville Ro	ad											
30 31	L2 T1	41 1687	0 169	43 1776	0.0 10.0	0.273 *0.619	14.7 12.7	LOS B LOS A	8.2 26.2	61.3 199.5	0.43 0.58	0.43 0.54	0.43 0.58	46.0 46.1
Appro		1728 dville Roa	169 ad	1819	9.8	0.619	12.7	LOSA	26.2	199.5	0.58	0.54	0.58	46.1
25 Appro	T1 bach	1973 1973	247 247	2077 2077	12.5 12.5	0.500 0.500	4.9 4.9	LOS A LOS A	14.8 14.8	115.0 115.0	0.37 0.37	0.34 0.34	0.37 0.37	53.6 53.6
West	Kirra	ng Avenu	е											
27 29	L2 R2	22 101	0 0	23 106	0.0 0.0	0.110 * 0.505	63.5 64.5	LOS E LOS E	1.3 6.5	9.4 45.7	0.93 0.98	0.71 0.79	0.93 0.98	24.4 25.8
Appro All	bach	123 3824	0 416	129 4025	0.0	0.505	64.3 10.3	LOS E	6.5 26.2	45.7 199.5	0.97	0.77	0.97	25.6 47.9
Vehic	les													

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary									
Phase	Α	в	С						
Phase Change Time (sec)	93	114	0						
Green Time (sec)	15	10	87						
Phase Time (sec)	21	16	93						
Phase Split	16%	12%	72%						

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C

∇ Site: 105 [Villawood Road and Villawood Place (Site Folder: 2031 Scenario - PM Peak | Without Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2031 PM Peak Without Dev Give-Way (Two-Way)

Vehicle Movement Performance														
Mov ID	Turn	INF VOLU [Total veh/h	PUT JMES HV] veh/h	DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
South	n: Villa	wood Pla	ice											
1	L2	1	0	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.32	0.50	0.32	44.5
2	T1	1	0	1	0.0	0.057	8.9	LOSA	0.2	1.5	0.52	0.69	0.52	38.4
3	R2	48	0	51	0.0	0.057	7.0	LOS A	0.2	1.5	0.52	0.69	0.52	36.6
Appro	oach	50	0	53	0.0	0.057	7.0	LOSA	0.2	1.5	0.51	0.69	0.51	36.9
East:	Villaw	ood Roa	d											
4	L2	37	0	39	0.0	0.285	6.9	LOS A	1.9	13.2	0.31	0.18	0.31	42.5
5	T1	247	5	260	2.0	0.285	1.4	LOS A	1.9	13.2	0.31	0.18	0.31	46.4
6	R2	86	0	91	0.0	0.285	7.2	LOS A	1.9	13.2	0.31	0.18	0.31	38.
Appro	oach	370	5	389	1.4	0.285	3.3	NA	1.9	13.2	0.31	0.18	0.31	45.2
North	: Villa	wood Pla	се											
7	L2	67	0	71	0.0	0.063	5.3	LOS A	0.2	1.6	0.28	0.54	0.28	31.6
8	T1	1	0	1	0.0	0.003	9.0	LOS A	0.0	0.1	0.55	0.57	0.55	37.7
9	R2	1	0	1	0.0	0.003	6.4	LOS A	0.0	0.1	0.55	0.57	0.55	42.1
Appro	oach	69	0	73	0.0	0.063	5.4	LOSA	0.2	1.6	0.29	0.54	0.29	32.1
West	: Villav	vood Roa	ad											
10	L2	1	0	1	0.0	0.051	4.6	LOSA	0.0	0.0	0.00	0.01	0.00	49.1
11	T1	184	4	194	2.2	0.051	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	50.0
12	R2	1	0	1	0.0	0.002	7.2	LOS A	0.0	0.0	0.45	0.53	0.45	43.3
Appro	oach	186	4	196	2.2	0.051	0.1	NA	0.0	0.0	0.00	0.01	0.00	49.9
All Vehic	les	675	9	711	1.3	0.285	2.9	NA	1.9	13.2	0.24	0.21	0.24	45.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2031 Scenario - PM Peak | Without Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 PM Peak Without Dev Signals - Actuated Isolated Cycle Time = 123 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: Map Extract Default - Import Reference Phase: Phase A Input Phase Sequence: A1, A, B1, B Output Phase Sequence: A1, A, B1, B

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLL		DEM FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec	Octvice	[Veh. veh	Dist] m	Que	Rate	Cycles	km/h
South	n: Woo	dville Ro		ven/n	70	V/C	Sec	_	ven	111	_	_	_	K111/11
1	L2	65	0	68	0.0	0.944	50.5	LOS D	61.1	461.4	1.00	1.03	1.14	10.2
31	T1	1616	162	1701	10.0	0.944	44.8	LOS D	61.1	461.4	1.00	1.03	1.14	29.8
32	R2	21	2	22	9.5	0.199	69.0	LOSE	1.3	10.0	0.96	0.71	0.96	20.2
Appro		1702	164	1792	9.6	0.944	45.3	LOS D	61.1	461.4	1.00	1.03	1.14	28.8
East:	Llewe	ellyn Aver	ue											
21	L2	81	11	85	13.6	0.902	59.4	LOS E	9.4	69.8	0.93	0.82	1.01	22.0
5	T1	74	0	78	0.0	* 0.902	54.8	LOS D	9.4	69.8	0.93	0.82	1.01	20.0
23	R2	165	41	174	24.8	*0.631	50.9	LOS D	9.0	76.5	0.91	0.87	0.91	30.2
Appro	oach	320	52	337	16.3	0.902	54.0	LOS D	9.4	76.5	0.92	0.84	0.96	26.2
North	: Woo	dville Ro	ad											
24	L2	104	15	109	14.4	1.137	178.9	LOS F	133.3	1033.3	1.00	1.74	2.04	14.8
25	T1	1910	235	2011	12.3	* 1.137	173.3	LOS F	133.3	1033.3	1.00	1.75	2.04	12.0
9	R2	229	5	241	2.2	* 1.301	306.1	LOS F	32.7	233.3	1.00	1.50	2.82	5.9
Appro	oach	2243	255	2361	11.4	1.301	187.1	LOS F	133.3	1033.3	1.00	1.72	2.12	11.1
West	: Villav	vood Roa	d											
10	L2	194	4	204	2.1	0.322	32.9	LOS C	9.0	63.9	0.76	0.76	0.76	30.8
11	T1	1	0	1	0.0	0.003	47.7	LOS D	0.1	0.4	0.85	0.51	0.85	22.2
12	R2	103	0	108	0.0	0.454	47.2	LOS D	5.4	37.7	0.93	0.76	0.93	14.8
Appro	oach	298	4	314	1.3	0.454	37.9	LOS C	9.0	63.9	0.82	0.76	0.82	25.6
All Vehic	les	4563	475	4803	10.4	1.301	115.1	LOS F	133.3	1033.3	0.98	1.34	1.59	15.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary											
Phase	A1	Α	B1	В							
Phase Change Time (sec)	109	0	70	84							
Green Time (sec)	8	64	8	19							
Phase Time (sec)	14	70	14	25							
Phase Split	11%	57%	11%	20%							

Input Phase Sequence

Phase Sequence: Map Extract Default - Import Reference Phase: Phase A Input Phase Sequence: A1, A, B1, B

Mixed Running & Stopped MCs

Conter Movement Class (MC) Stopped

Continuous Movement

Phase Transition Applied

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2031 Scenario - PM Peak | Without Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 PM Peak Without Dev Signals - Actuated Isolated Cycle Time = 92 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B Output Phase Sequence: A, A1, B

Mov ID	Turn	INF VOLL		DEM FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. E Que	Effective Stop	Aver. No.	Aver.
IU		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec	Service	[Veh. veh	Dist] m	Que	Rate	Cycles	Speed km/h
Sout	h: Woo	dville Ro	ad											
1	L2	72	0	76	0.0	0.812	21.1	LOS B	30.4	230.2	0.83	0.77	0.83	25.0
31	T1	1610	165	1695	10.2	*0.812	15.5	LOS B	30.7	233.9	0.83	0.77	0.83	38.3
Appr	oach	1682	165	1771	9.8	0.812	15.8	LOS B	30.7	233.9	0.83	0.77	0.83	37.6
East:	Binna	Burra St												
21	L2	52	2	55	3.8	0.305	39.0	LOS C	4.4	31.9	0.87	0.72	0.87	20.2
5	T1	57	1	60	1.8	0.305	35.2	LOS C	4.4	31.9	0.87	0.72	0.87	10.6
23	R2	101	0	106	0.0	0.288	38.9	LOS C	4.1	28.8	0.86	0.75	0.86	16.0
Appr	oach	210	3	221	1.4	0.305	37.9	LOS C	4.4	31.9	0.86	0.74	0.86	15.9
North	n: Woo	dville Roa	ad											
24	L2	169	2	178	1.2	*0.602	12.0	LOS A	15.5	117.7	0.54	0.55	0.54	21.3
25	T1	1903	244	2003	12.8	0.602	7.5	LOS A	16.8	130.5	0.54	0.51	0.54	46.7
9	R2	28	28	29	100.0	* 1.270	298.0	LOS F	4.2	55.1	1.00	1.25	3.25	2.9
Appr	oach	2100	274	2211	13.0	1.270	11.8	LOS A	16.8	130.5	0.55	0.53	0.58	39.8
All Vehic	cles	3992	442	4202	11.1	1.270	14.8	LOS B	30.7	233.9	0.68	0.64	0.70	37.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary										
Phase	Α	A1	В							
Phase Change Time (sec)	0	62	70							
Green Time (sec)	56	2	19							
Phase Time (sec)	62	5	25							
Phase Split	67%	5%	27%							

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B

Site: 104 [The Horsley Drive and River Avenue (Site Folder: 2031 Scenario - PM Peak | Without Kamira Ave Traffic)]

The Horsley Drive and River Avenue

Site Category: 2031 PM Peak Without Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehi	cle Me	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total	PUT JMES HV]	DEM FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	n: The	Horsley I	Drive											
2	T1	1188	166	1251	14.0	0.751	14.3	LOS A	14.0	110.1	0.88	0.85	0.98	44.3
3	R2	207	9	218	4.3	*0.718	25.5	LOS B	5.6	40.4	0.93	0.93	1.15	41.1
Appro	bach	1395	175	1468	12.5	0.751	16.0	LOS B	14.0	110.1	0.89	0.86	1.00	43.7
East:	River	Avenue												
4	L2	200	22	211	11.0	0.243	9.2	LOS A	1.7	12.9	0.47	0.68	0.47	51.4
26	R2	768	60	808	7.8	*0.767	26.4	LOS B	10.3	77.1	0.97	0.93	1.15	36.4
Appro	bach	968	82	1019	8.5	0.767	22.9	LOS B	10.3	77.1	0.86	0.88	1.01	39.4
North	: The I	Horsley [Drive											
27	L2	606	26	638	4.3	0.349	6.3	LOS A	0.0	0.0	0.00	0.53	0.00	52.8
8	T1	847	67	892	7.9	0.436	9.9	LOS A	6.3	47.3	0.70	0.60	0.70	48.3
Appro	bach	1453	93	1529	6.4	0.436	8.4	LOS A	6.3	47.3	0.41	0.57	0.41	50.3
All Vehic	les	3816	350	4017	9.2	0.767	14.8	LOS B	14.0	110.1	0.70	0.75	0.78	44.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary								
Phase	Α	в						
Phase Change Time (sec)	0	29						
Green Time (sec)	23	15						
Phase Time (sec)	29	21						
Phase Split	58%	42%						

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B

Site: 103 [Woodville Road and Kirrang Avenue (Site Folder: 2031 Scenario - PM Peak | With Kamira Ave Traffic)]

Woodville Road and Kirrang Avenue

Site Category: 2031 PM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLL [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% B/ QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Woo	dville Ro	ad											
30 31 Appro	L2 T1	133 1726 1859	0 169 169	140 1817 1957	0.0 9.8 9.1	0.340 * 0.770 0.770	16.2 15.3 15.4	LOS B LOS B LOS B	8.0 26.8 26.8	58.9 203.4 203.4	0.56 0.79 0.78	0.59 0.74 0.73	0.56 0.79 0.78	46.4 43.7 43.9
		dville Roa		2102	12.4	0.546	5.7	LOSA		105.4				43.9 52.7
Appro	bach	1997 1997	247	2102	12.4	0.546	5.7	LOSA	13.6 13.6	105.4	0.48 0.48	0.44 0.44	0.48 0.48	52.7
West	Kirra	ng Avenu	е											
27 29	L2 R2	22 175	0 0	23 184	0.0 0.0	0.095 * 0.774	45.1 50.3	LOS D LOS D	0.9 8.6	6.4 60.1	0.91 1.00	0.70 0.90	0.91 1.20	29.0 29.8
Appro	bach	197	0	207	0.0	0.774	49.7	LOS D	8.6	60.1	0.99	0.88	1.17	29.8
All Vehic	les	4053	416	4266	10.3	0.774	12.3	LOS A	26.8	203.4	0.64	0.59	0.65	46.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary								
Phase	Α	в	С					
Phase Change Time (sec)	58	76	0					
Green Time (sec)	12	8	52					
Phase Time (sec)	18	14	58					
Phase Split	20%	16%	64%					

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase C Input Phase Sequence: A, B, C

∇ Site: 105 [Villawood Road and Villawood Place (Site Folder: 2031 Scenario - PM Peak | With Kamira Ave Traffic)]

Villawood Road and Villawood Place Site Category: 2031 PM Peak With Dev Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
South	n: Villa	wood Pla	ice											
1	L2	1	0	1	0.0	0.001	5.9	LOS A	0.0	0.0	0.38	0.51	0.38	44.4
2	T1	1	0	1	0.0	0.071	12.2	LOSA	0.3	1.8	0.58	0.77	0.58	37.0
3	R2	48	0	51	0.0	0.071	8.2	LOS A	0.3	1.8	0.58	0.77	0.58	35.2
Appro	oach	50	0	53	0.0	0.071	8.2	LOS A	0.3	1.8	0.58	0.76	0.58	35.6
East:	Villaw	ood Roa	d											
4	L2	37	0	39	0.0	0.352	9.2	LOS A	2.9	20.7	0.37	0.17	0.43	41.0
5	T1	326	5	343	1.5	0.352	2.6	LOS A	2.9	20.7	0.37	0.17	0.43	47.1
6	R2	86	0	91	0.0	0.352	9.6	LOS A	2.9	20.7	0.37	0.17	0.43	36.0
Appro	oach	449	5	473	1.1	0.352	4.5	NA	2.9	20.7	0.37	0.17	0.43	45.7
North	: Villa	wood Pla	се											
7	L2	67	0	71	0.0	0.071	5.8	LOS A	0.3	1.8	0.36	0.59	0.36	31.1
8	T1	1	0	1	0.0	0.004	12.3	LOS A	0.0	0.1	0.62	0.63	0.62	35.4
9	R2	1	0	1	0.0	0.004	7.4	LOS A	0.0	0.1	0.62	0.63	0.62	40.4
Appro	oach	69	0	73	0.0	0.071	6.0	LOSA	0.3	1.8	0.37	0.59	0.37	31.5
West	: Villav	vood Roa	ad											
10	L2	1	0	1	0.0	0.078	4.9	LOS A	0.0	0.0	0.00	0.01	0.00	51.8
11	T1	286	4	301	1.4	0.078	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	53.1
12	R2	1	0	1	0.0	0.002	8.3	LOS A	0.0	0.0	0.51	0.56	0.51	42.6
Appro	oach	288	4	303	1.4	0.078	0.1	NA	0.0	0.0	0.00	0.01	0.00	53.1
All Vehic	des	856	9	901	1.1	0.352	3.4	NA	2.9	20.7	0.26	0.18	0.29	47.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 101 [Woodville Road and Villawood Road and Llewellyn Avenue (Site Folder: 2031 Scenario - PM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 PM Peak With Dev Signals - Actuated Isolated Cycle Time = 123 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A1, A, B1, B Output Phase Sequence: A1, A, B1, B

Vehicle Movement Performance											_			
Mov ID	Turn	INP VOLL í Total	IMES	DEM FLO	WS	Deg. Satn		Level of Service	QU	ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	h: Woo	dville Ro	ad											
1	L2	74	0	78	0.0	0.949	52.2	LOS D	62.5	472.1	1.00	1.04	1.16	10.0
31	T1	1616	162	1701	10.0	0.949	46.4	LOS D	62.5	472.1	1.00	1.05	1.16	29.2
32	R2	21	2	22	9.5	0.199	69.0	LOS E	1.3	10.0	0.96	0.71	0.96	20.2
Appro	oach	1711	164	1801	9.6	0.949	47.0	LOS D	62.5	472.1	1.00	1.04	1.15	28.2
East:	Llewe	ellyn Aven	ue											
21	L2	81	11	85	13.6	0.918	61.0	LOS E	9.8	73.0	0.93	0.84	1.04	21.7
5	T1	78	0	82	0.0	*0.918	56.3	LOS D	9.8	73.0	0.93	0.84	1.04	19.7
23	R2	165	41	174	24.8	*0.770	52.7	LOS D	9.0	76.5	0.96	0.88	0.96	29.8
Appro	oach	324	52	341	16.0	0.918	55.6	LOS D	9.8	76.5	0.95	0.86	1.00	25.7
North	n: Woo	dville Roa	ad											
24	L2	104	15	109	14.4	1.137	178.9	LOS F	133.3	1033.3	1.00	1.74	2.04	14.8
25	T1	1910	235	2011	12.3	* 1.137	173.3	LOS F	133.3	1033.3	1.00	1.75	2.04	12.0
9	R2	295	5	311	1.7	* 1.677	640.0	LOS F	63.9	453.5	1.00	1.96	4.04	3.1
Appro	oach	2309	255	2431	11.0	1.677	233.2	LOS F	133.3	1033.3	1.00	1.78	2.30	9.2
West	: Villav	vood Roa	d											
10	L2	265	4	279	1.5	0.440	37.0	LOS C	12.3	87.3	0.80	0.87	0.80	29.2
11	T1	5	0	5	0.0	0.017	48.4	LOS D	0.3	1.9	0.85	0.56	0.85	22.0
12	R2	131	0	138	0.0	0.587	48.1	LOS D	7.0	49.0	0.95	0.78	0.95	14.6
Appro	oach	401	4	422	1.0	0.587	40.7	LOS C	12.3	87.3	0.85	0.84	0.85	24.8
All Vehic	cles	4745	475	4995	10.0	1.677	137.6	LOS F	133.3	1033.3	0.98	1.37	1.68	13.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary								
Phase	A1	Α	B1	В				
Phase Change Time (sec)	109	0	70	84				
Green Time (sec)	8	64	8	19				
Phase Time (sec)	14	70	14	25				
Phase Split	11%	57%	11%	20%				

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A1, A, B1, B

Mixed Running & Stopped MCs

Conter Movement Class (MC) Stopped

Continuous Movement

Phase Transition Applied

Site: 102 [Woodville Road and Howatt Street and Binna Burra Street (Site Folder: 2031 Scenario - PM Peak | With Kamira Ave Traffic)]

Woodville Road and Villawood Road and Llewellyn Avenue Site Category: 2031 PM Peak With Dev Signals - Actuated Isolated Cycle Time = 92 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B Output Phase Sequence: A, A1, B

Veh	icle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLL [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
Sout	h: Woo	dville Ro	ad											
1 31 Appr	L2 T1 roach	104 1616 1720	0 165 165	109 1701 1811	0.0 10.2 9.6	0.830 * 0.830 0.830	21.4 15.9 16.2	LOS B LOS B LOS B	31.8 32.1 32.1	239.9 244.4 244.4	0.85 0.85 0.85	0.79 0.79 0.79	0.85 0.85 0.85	24.8 37.9 37.0
East	: Binna	Burra St												
21 5 23 Appr	L2 T1 R2 roach	52 57 104 213	2 1 0 3	55 60 109 224	3.8 1.8 0.0 1.4	0.305 0.305 0.296 0.305	39.0 35.2 39.0 38.0	LOS C LOS C LOS C LOS C	4.4 4.4 4.2 4.4	31.9 31.9 29.7 31.9	0.87 0.87 0.86 0.86	0.72 0.72 0.76 0.74	0.87 0.87 0.86 0.86	20.2 10.6 16.0 15.9
Nort	h: Woo	dville Roa	ad											
24 25 9	L2 T1 R2	173 1928 28	2 244 28	182 2029 29	1.2 12.7 100.0	* 0.610 0.610 * 1.270	12.1 7.6 298.0	LOS A LOS A LOS F	15.9 17.1 4.2	120.6 132.9 55.1	0.54 0.55 1.00	0.56 0.52 1.25	0.54 0.55 3.25	21.3 46.6 2.9
Appr All Vehi	oach cles	2129 4062	274 442	2241 4276	12.9 10.9	1.270 1.270	11.8 15.0	LOS A	17.1 32.1	132.9 244.4	0.55 0.69	0.53 0.65	0.58 0.71	39.7 36.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary							
Phase	Α	A1	В				
Phase Change Time (sec)	0	62	70				
Green Time (sec)	56	2	19				
Phase Time (sec)	62	5	25				
Phase Split	67%	5%	27%				

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, A1, B

Site: 104 [The Horsley Drive and River Avenue (Site Folder: 2031 Scenario - PM Peak | With Kamira Ave Traffic)]

The Horsley Drive and River Avenue

Site Category: 2031 PM Peak With Dev Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum Delay)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B Output Phase Sequence: A, B

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU	IMES	DEM FLO	WS	Deg. Satn		Level of Service	95% BA QUE	EUE	Prop. Que	Effective Stop		Aver Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %		sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: The	Horsley [Drive											
2	T1	1192	166	1255	13.9	0.753	14.4	LOS A	14.1	110.9	0.89	0.85	0.98	44.3
3	R2	207	9	218	4.3	*0.721	25.7	LOS B	5.6	40.5	0.93	0.93	1.16	41.0
Appro	bach	1399	175	1473	12.5	0.753	16.1	LOS B	14.1	110.9	0.89	0.86	1.01	43.6
East:	River	Avenue												
4	L2	200	22	211	11.0	0.244	9.2	LOS A	1.7	12.9	0.47	0.68	0.47	51.4
26	R2	768	60	808	7.8	*0.767	26.4	LOS B	10.3	77.1	0.97	0.93	1.15	36.4
Appro	bach	968	82	1019	8.5	0.767	22.9	LOS B	10.3	77.1	0.86	0.88	1.01	39.4
North	: The I	Horsley D	Drive											
27	L2	606	26	638	4.3	0.349	6.3	LOS A	0.0	0.0	0.00	0.53	0.00	52.8
8	T1	851	67	896	7.9	0.438	10.0	LOS A	6.4	47.5	0.70	0.60	0.70	48.3
Appro	bach	1457	93	1534	6.4	0.438	8.4	LOS A	6.4	47.5	0.41	0.57	0.41	50.2
All Vehic	les	3824	350	4025	9.2	0.767	14.9	LOS B	14.1	110.9	0.70	0.76	0.78	44.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Phase Timing Summary		
Phase	Α	В
Phase Change Time (sec)	0	29
Green Time (sec)	23	15
Phase Time (sec)	29	21
Phase Split	58%	42%

Input Phase Sequence

Phase Sequence: Map Extract Default Reference Phase: Phase A Input Phase Sequence: A, B

Phase A	REF	Phase B
The Horsley Drive		The Horsley Drive
Щ.,	enu	
	River Avenue	
	-	
ir		lr lr
The Horsley Drive		The Horsley Drive

REF: Reference Phase VAR: Variable Phase

\implies	Normal Movement	\implies	Permitted/Opposed
\longrightarrow	Slip/Bypass-Lane Movement	\longrightarrow	Opposed Slip/Bypass-Lane
	Stopped Movement		Turn On Red
\implies	Other Movement Class (MC) Running	\implies	Undetected Movement
	Mixed Running & Stopped MCs	\implies	Continuous Movement
	Other Movement Class (MC) Stopped	•	Phase Transition Applied

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TRAFFWISE CONSULTANTS PTY LTD | Licence: NETWORK / 1PC | Created: Wednesday, 8 September 2021 10:53:06 AM Project: D:\Traffwise Consultants\Projects\2021-7 (26) Villawood Modelling - LEP Application\SIDRA Modelling\Modelling of Intersections.sip9

Traffic Impact Assessment – Kamira Court Precinct Kamira Avenue, Villawood NSW 2163

A Traffic Engineering and Road Safety Consultancy

Contact Us info@traffwise.com.au

September 20, 2021